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Schedulers map a set of work to a 
set of resources
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Schedulers In the Wild

Type Work Resources

CPU Scheduler Threads Physical Cores

AWS EC2 / OpenStack Nova Virtual Machines Hypervisors

Hadoop YARN MapReduce Jobs Client Nodes

Cluster Scheduler Applications Servers
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Priorities 

Resource Isolation 

Pre-emption
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Cluster Scheduler 

Easily Deploy Applications 

Job Specification
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example.nomad

# Define our simple redis job
job "redis" {

  # Run only in us-east-1
  datacenters = ["us-east-1"]

  # Define the single redis task using Docker
  task "redis" {
    driver = "docker"

    config {
      image = "redis:latest"
    }

    resources {
      cpu = 500 # Mhz
      memory = 256 # MB
      network {
        mbits = 10
        dynamic_ports = ["redis"]
      }
    }
  }
}
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Job Specification

Declares what to run
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Job Specification

Nomad determines where and 
manages how to run
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Job Specification

Abstract work from resources
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Higher Resource Utilization 

Decouple Work from Resources  

Better Quality of Service
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Designing Nomad
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Multi-Datacenter 

Multi-Region 

Flexible Workloads 

Job Priorities 

Bin Packing 

Large Scale 

Operationally Simple
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Thousands of regions 

Tens of thousands of clients per region 

Thousands of jobs per region
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Cluster Management 

Gossip Based (P2P) 

Membership 

Failure Detection 

Event System
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Gossip Protocol 

Large Scale 

Production Hardened 

Operationally Simple
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Service Discovery 

Configuration 

Coordination (Locking) 

Central Servers + 
Distributed Clients
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Multi-Datacenter 

Raft Consensus 

Large Scale 

Production Hardened



HASHICORP

gossip consensus

Mature Libraries 

Design Patterns 

 No Scheduling Logic
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Built on Research

gossip consensus
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Optimistic vs Pessimistic 

Internal vs External State 

Single vs Multi Level 

Fixed vs Pluggable 

Service vs Batch Oriented
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Inspired by Google Omega 

Optimistic Concurrency 

Internal State and Coordination 

Service and Batch workloads 

Pluggable Architecture
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Multi-Datacenter 

Servers Per DC 

Failure Isolation Domain 

is the Datacenter
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Single Region Architecture

SERVER SERVER SERVER

CLIENT CLIENT CLIENT
DC1 DC2 DC3

FOLLOWER LEADER FOLLOWER

REPLICATION
FORWARDING

REPLICATION
FORWARDING

RPC RPC RPC



HASHICORP

Multi Region Architecture

SERVER SERVER SERVER
FOLLOWER LEADER FOLLOWER

REPLICATION
FORWARDING

REPLICATION

REGION  B GOSSIP

REPLICATION REPLICATION
FORWARDING

REGION  FORWARDING

 REGION  A

SERVER
FOLLOWER

SERVER SERVER
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Region is Isolation Domain 

1-N Datacenters Per Region 

Flexibility to do 1:1 (Consul) 

Scheduling Boundary
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Data Model
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Evaluations ~= State Change Event
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Create / Update / Delete Job 

Node Up / Node Down 

Allocation Failed
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“Scheduler” =  
func(Eval) => []AllocUpdates
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Scheduler func’s can specialize 

(Service, Batch, System, etc)
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Evaluation Dequeue
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Plan Generation
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Plan Execution
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External  Event

Evalua?on  Crea?on

Evalua?on  Queuing

Evalua?on  Processing

Op?mis?c  Coordina?on

State  Updates
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Server Architecture

Omega Class Scheduler 

Pluggable Logic 

Internal Coordination and State 

Multi-Region / Multi-Datacenter
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Client Architecture

Broad OS Support 

Host Fingerprinting 

Pluggable Drivers
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Fingerprinting

Operating System 

Hardware 

Applications 

Environment

Type Examples

Kernel, OS, Versions 

CPU, Memory, Disk 

Java, Docker, Consul 

AWS, GCE
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Fingerprinting

Constrain Placement and Bin Pack
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Fingerprinting

“Task Requires Linux, Docker, and 
PCI-Compliant Hardware” 
expressed as Constraints
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Fingerprinting

“Task needs 512MB RAM and 1 Core” 
expressed as Resource Ask
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Drivers

Execute Tasks  

Provide Resource Isolation
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Java Jar

Static Binaries
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Containerized

Virtualized

Standalone

Docker

Rocket

Windows Server Containers

Qemu / KVM

Hyper-V

Xen

Java Jar

Static Binaries

C#
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Workload Flexibility: 

Schedulers 

Fingerprints 

Drivers 

Job Specification 
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Operational Simplicity: 

Single Binary 

No Dependencies 

Highly Available
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Nomad 0.1

Released in October 

Service and Batch Scheduler 

Docker, Qemu, Exec, Java Drivers
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Case Study

3 servers in NYC3 

100 clients in NYC3, SFO1, AMS2/3 

1000 Containers
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Case Study

<1s to schedule 

1s to first start 

6s to 95% 

8s to 99%
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Nomad 0.2 - Service Workloads

Service Discovery 

System Scheduler 

Restart Policies 

Enhanced Constraints
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Nomad 0.3 - Batch Workloads

Cron 

Job Queuing 

Latency-Aware Scheduling
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Production Hardening

Nomad 0.2 in Prod 

Stress Testing 

Atlas Integration



Nomad
HASHICORP

Cluster Scheduler 

Easily Deploy Applications 

Job Specification
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Higher Resource Utilization 

Decouple Work from Resources  

Better Quality of Service
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Thanks! 
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