[B) HASHICORP

Armon Dadgar

(@armon

Distributed
Optimistically Concurrent

Scheduler

Nomad

[B) HASHICORP

Distributed

Optimistically Concurrent

Scheduler

Nomad

[B) HASHICORP

Schedulers map a set of work to a
set of resources

Work (Input) Resources

CPU-Corel

CPU-Core 2

Web Server -Thread 1 i

Web Server -Thread 2

Scheduler

Redis -Thread 1 v

Kernel -Thread 1 et

o'.v
CPU
.

CPU Scheduler @

Work (Input) Resources

Web Server -Thread 1

Web Server -Thread 2 |SAE P » CPU-Core 1
| CPU
~ Scheduler .
Redis -Thread 1 \/ r CPU - Core 2
Kernel -Thread 1

CPU Scheduler @

Type Work Resources

CPU Scheduler Threads Physical Cores
AWS EC2 / OpenStack Nova Virtual Machines Hypervisors
Hadoop YARN MapReduce Jobs Client Nodes
Cluster Scheduler Applications Servers

Schedulers In the Wild

Higher Resource Utilization
Decouple Work from Resources

Better Quality of Service

Advantages

Higher Resource Utilization Bin Packing
Over-Subscription

Job Queueing

Advantages @

Abstraction
Decouple Work from Resources APl Contracts

Standardization

Advantages @

Priorities
Resource Isolation

Better Quality of Service Pre-emption

Advantages @

Tl L
L Zon
. aglir)] S%I‘VICGS

Google

NETFLIX &

[B) HASHICORP

Cluster Scheduler
Easily Deploy Applications

Job Specification

Nomad

[B) HASHICORP

example.nomad

Define our simple redis job
job "redis" {

Run only 1n us-east-1
datacenters = ["us-east-1"]

Define the single redis task using Docker
task "redis" {

driver = "docker"
config {

image = "redis:latest”
¥

resources {
cpu = 500 # Mhz
memory = 256 # MB
network {
mbits = 10
dynamic_ports = ["redis"]

¥

[H) HASHICORP

Declares what to run

Job Specification

Nomad determines where and
manages how to run

Job Specification @

Abstract work from resources

Job Specification @

Higher Resource Utilization
Decouple Work from Resources

Better Quality of Service

Nomad

[H) HASHICORP

d
(0
-
O

Z
ol

C
C

Q0
N
D

a

\ A A X X
A A A &
\ A A X X
A A A &
\ A A X X
A A X X

Multi-Datacenter
Multi-Region
Flexible Workloads
Job Priorities
Bin Packing

Large Scale
N O m a d Operationally Simple

[H) HASHICORP

Thousands of regions

Tens of thousands of clients per region

Thousands of jobs per region

Built on Experience

Cluster Management
Gossip Based (P2P)
Membership
Failure Detection

Event System

Gossip Protocol
Large Scale

Production Hardened

Operationally Simple

Service Discovery
Configuration
Coordination (Locking)

Central Servers +
Distributed Clients

Multi-Datacenter
Raft Consensus

Large Scale

Production Hardened

Mature Libraries

Design Patterns

\
No Scheduling Logic | /

gOSSIp consensus

Research
-am plab . 0 at Google

Built on Research

- Research
at Google

Large-scale cluster management at Google withBorg B aq Omega: flexible, scalable schedulers for large R Q

Abstract: Google's Borg system is a cluster manager that runs hundreds of thousands of jobs, from many ComPUte clusters

thousands of different applications, across a number of clusters each with up to tens of thousands of machines.
It achieves high utilization by combining admission control, efficient task-packing, over-commitment, and
machine sharing with process-level performance isolation. It supports high-availability applications with runtime
features that minimize fault-recovery time, and scheduling policies that reduce the probability of correlated
failures. Borg simplifies life for its users by offering a declarative job specification language, name service
integration, real-time job monitoring, and tools to analyze and simulate system behavior.

Abstract: Increasing scale and the need for rapid response to changing requirements are hard to meet with
current monolithic cluster scheduler architectures. This restricts the rate at which new features can be
deployed, decreases efficiency and utilization, and will eventually limit cluster growth. We present a novel
approach to address these needs using parallelism, shared state, and lock-free optimistic concurrency control.
We compare this approach to existing cluster scheduler designs, evaluate how much interference between

schedulers occurs and how much it matters in practice, present some techniques to alleviate it, and finally

We present a summary of the Borg system architecture and features, important design decisions, a quantitative discuss a use case highlighting the advantages of our approach -- all driven by real-life Google production
analysis of some of its policy decisions, and a qualitative examination of lessons learned from a decade of workloads.

operational experience with it.

.
|

Ff o

e

F 1 \:{’

s

Sparrow: Low Latency Scheduling for Interactive Cluster Services Mesos - Dynamic Resource Sharing for Clusters

Posted on March 28, 2012 by Patrick Wendell Posted on November 21, 2011 by kilov

Mesos is a cluster manager that provides efficient resource isolation and sharing across distributed applications,

The Sparrow project introduces a distributed cluster scheduling architecture which supports ultra-high throughput, low
or frameworks. It can run Hadoop, MPl,Hypertable, Spark (a new framework for low-latency interactive and

latency task scheduling. By supporting very low-latency tasks (and their associated high rate of task turnover), Sparrow
enables a new class of cluster applications which analyze data at unprecedented volume and speed. The Sparrow
project is under active development and maintained in our public github repository.

iterative jobs), and other applications. Mesos is open source in the Apache Incubator.

Optimistic vs Pessimistic

Internal vs External State

. Research
at Google

Single vs Multi Level /,!
-amplab/|-
UC BERKELEY 4

Fixed vs Pluggable

Service vs Batch Oriented

Inspired by Google Omega
Optimistic Concurrency
Internal State and Coordination

Service and Batch workloads

d Pluggable Architecture
Noma

[H) HASHICORP

Datacenter 1

Leader s
Fommrcilng\~

Replication —»

.’ Remote DC Forwarding
.’ N\

Datacenter 2 L’

<+— Replication Replication —»

IO

Leader
Forwarding

(H) HASHICORP

Multi-Datacenter

Servers Per DC

Failure Isolation Domain

is the Datacenter

CLIENT CLIENT CLIENT

DC3

DC1

RPC RPC RPC

l l

SERVER SERVER puisteitondl SERVER

FOLLOWER LEADER < FORWARDING— FOLLOWER

DC2

<4—REPLICATION=—
— FORWARDING =»

([H) HASHICORP

Single Region Architecture @

€ REGION A

SERVER <—REPLICATION— SERVER Bt SERVER
FOLLOWER) T v LEADER < FORWARDING=— FOLLOWER

' |

REGION FORWARDING

!

SERVER [wiieivad) SERVER

HASHICORP

€ REGIONB GOSSIP

2

SERVE

FOLLOWER

< REPLICATION=—
*- L 4

Multi Region Architecture @

Region is Isolation Domain

1-N Datacenters Per Region

Flexibility to do 1:1 (Consul)

Scheduling Boundary

Nomad

[B) HASHICORP

EVALUATION BEumeeeeeasdl ALLOCATION

/
\

HASHICORP

Data Model @

Fvaluations ~= State Change Event

Create / Update / Delete Job
Node Up / Node Down
Allocation Failea

“Scheduler’” =
func(Eval) => []JAllocUpdates

Scheduler func's can specialize

(Service, Batch, System, etc)

NODE

REGISTER . FAILURE

: JOB
; UPDATE

, JOB

!
CREATE
v

EVALUATION

EVALUATION EVALUATION

ENQUEUE

| I EVALUATION

BROKER

LEADER

HASHICORP

Evaluation Enqueue

ENQUEUE

| | EVALUATION

BROKER

LEADER

I
¢—DEQUEUE—¢

SERVER SERVER SERVER

SERVICE SCHEDULER BATCH SCHEDULER CUSTOM SCHEDULER

HASHICORP

Evaluation Dequeue @

SERVER SERVER SERVER

SERVICE SCHEDULER

T RECEIVE PLAN
SUBMIT PLAN RESULT

I—> PLAN QUEUE 4—'

LEADER

BATCH SCHEDULER CUSTOM SCHEDULER

T

HASHICORP

Plan Generation @

| ¢ I

RECEIVE PLAN
SUBMIT PLAN RESULT

|—> PLAN QUEUE 4—'

LEADER

EATE
v

ALLOCATION ALLOCATION ALLOCATION

Plan Execution

JOB o JOB ' ' NODE

External Event REGISTER | | UPDATE | FAILURE
e]|
Evaluation Creation
e
Evaluation Queuing L, | souumon |
DEQQEUE

Evaluation Processing

1

RECEIVE PLAN
RESULT

Optimistic Coordination L | peanauese | —

EEEEEE

T

SUBMIT PLAN

!
CREATE

v v v
ALLOCATION ALLOCATION ALLOCATION

State Updates

([H) HASHICORP

Omega Class Scheduler
Pluggable Logic
Internal Coordination and State

Multi-Region / Multi-Datacenter

Server Architecture

Broad OS Support
Host Fingerprinting
Pluggable Drivers

Client Architecture

Type Examples

Operating System Kernel, OS, Versions

Hardware CPU, Memory, Disk

Applications Java, Docker, Consul
Environment AWS, GCE

Fingerprinting @

Constrain Placement and Bin Pack

Fingerprinting @

“Task Requires Linux, Docker, and
PCIl-Compliant Hardware”
expressed as Constraints

Fingerprinting

“Task needs 512MB RAM and 1 Core”

expressed as Resource Ask

Fingerprinting

Execute Tasks

Provide Resource Isolation

Drivers

Docker

Containerized Rocket
Qemu / KVM
Virtualized
Java Jar

Sta I Cl a I_O ne Static Binaries

Docker

Containerized Rocket
Qemu / KVM
Virtualized
Java Jar

Sta I Cl a lO ne Static Binaries

Nomad

Workload Flexibility:

Schedulers
Fingerprints
Drivers

Job Specification

[B) HASHICORP

Operational Simplicity:
Single Binary
No Dependencies

Highly Available

Nomad

[B) HASHICORP

[B) HASHICORP

Released in October
Service and Batch Scheduler

Docker, Qemu, Exec, Java Drivers

Nomad 0.1 @

e,
=
DigitalOcean

Case Study @

3 serversin NYC3
100 clients in NYC3, SFO1, AMS?2/3
1000 Containers

(n l:.
e
DigitalOcean

Case Study @

<1s to schedule

1s to first start
os to 959%
3s to 99%

DigitalOcean

Case Study @

Service Discovery
System Scheduler
Restart Policies

Enhanced Constraints

Nomad 0.2 - Service Workloads

Cron
Job Queuing
| atency-Aware Scheduling

Nomad 0.3 - Batch Workloads

Nomad 0.2 in Prod

Stress Testing
Atlas Integration

Production Hardening

Cluster Scheduler
Easily Deploy Applications

Job Specification

Nomad

[B) HASHICORP

Higher Resource Utilization
Decouple Work from Resources

Better Quality of Service

Nomad

[H) HASHICORP

Thanks!

Q/A

