
Nomad
HASHICORP

HASHICORP

Armon Dadgar
@armon

HASHICORP

Nomad
HASHICORP

Distributed

Optimistically Concurrent

Scheduler

Nomad
HASHICORP

Distributed

Optimistically Concurrent

Scheduler

HASHICORP

Schedulers map a set of work to a
set of resources

HASHICORP

CPU Scheduler

Web Server -Thread 1

CPU - Core 1

CPU - Core 2

Web Server -Thread 2

Redis -Thread 1

Kernel -Thread 1

Work (Input) Resources

CPU
Scheduler

HASHICORP

CPU Scheduler

Web Server -Thread 1

CPU - Core 1

CPU - Core 2

Web Server -Thread 2

Redis -Thread 1

Kernel -Thread 1

Work (Input) Resources

CPU
Scheduler

HASHICORP

Schedulers In the Wild

Type Work Resources

CPU Scheduler Threads Physical Cores

AWS EC2 / OpenStack Nova Virtual Machines Hypervisors

Hadoop YARN MapReduce Jobs Client Nodes

Cluster Scheduler Applications Servers

HASHICORP

Advantages

Higher Resource Utilization

Decouple Work from Resources

Better Quality of Service

HASHICORP

Advantages

Bin Packing

Over-Subscription

Job Queueing

Higher Resource Utilization

Decouple Work from Resources

Better Quality of Service

HASHICORP

Advantages

Abstraction

API Contracts

Standardization

Higher Resource Utilization

Decouple Work from Resources

Better Quality of Service

HASHICORP

Advantages

Priorities

Resource Isolation

Pre-emption

Higher Resource Utilization

Decouple Work from Resources

Better Quality of Service

HASHICORP

Nomad
HASHICORP

Nomad
HASHICORP

Cluster Scheduler

Easily Deploy Applications

Job Specification

HASHICORP

example.nomad

Define our simple redis job
job "redis" {

 # Run only in us-east-1
 datacenters = ["us-east-1"]

 # Define the single redis task using Docker
 task "redis" {
 driver = "docker"

 config {
 image = "redis:latest"
 }

 resources {
 cpu = 500 # Mhz
 memory = 256 # MB
 network {
 mbits = 10
 dynamic_ports = ["redis"]
 }
 }
 }
}

HASHICORP

Job Specification

Declares what to run

HASHICORP

Job Specification

Nomad determines where and
manages how to run

HASHICORP

Job Specification

Abstract work from resources

Nomad
HASHICORP

Higher Resource Utilization

Decouple Work from Resources

Better Quality of Service

HASHICORP

Designing Nomad

Nomad
HASHICORP

Multi-Datacenter

Multi-Region

Flexible Workloads

Job Priorities

Bin Packing

Large Scale

Operationally Simple

HASHICORP

Thousands of regions

Tens of thousands of clients per region

Thousands of jobs per region

HASHICORP

Built on Experience

gossip consensus

HASHICORP

Cluster Management

Gossip Based (P2P)

Membership

Failure Detection

Event System

HASHICORP

Gossip Protocol

Large Scale

Production Hardened

Operationally Simple

HASHICORP

Service Discovery

Configuration

Coordination (Locking)

Central Servers +
Distributed Clients

HASHICORP

Multi-Datacenter

Raft Consensus

Large Scale

Production Hardened

HASHICORP

gossip consensus

Mature Libraries

Design Patterns

 No Scheduling Logic

HASHICORP

Built on Research

gossip consensus

HASHICORP

HASHICORP

Optimistic vs Pessimistic

Internal vs External State

Single vs Multi Level

Fixed vs Pluggable

Service vs Batch Oriented

Nomad
HASHICORP

Inspired by Google Omega

Optimistic Concurrency

Internal State and Coordination

Service and Batch workloads

Pluggable Architecture

HASHICORP

HASHICORP

Multi-Datacenter

Servers Per DC

Failure Isolation Domain

is the Datacenter

HASHICORP

Single Region Architecture

SERVER SERVER SERVER

CLIENT CLIENT CLIENT
DC1 DC2 DC3

FOLLOWER LEADER FOLLOWER

REPLICATION
FORWARDING

REPLICATION
FORWARDING

RPC RPC RPC

HASHICORP

Multi Region Architecture

SERVER SERVER SERVER
FOLLOWER LEADER FOLLOWER

REPLICATION
FORWARDING

REPLICATION

REGION B GOSSIP

REPLICATION REPLICATION
FORWARDING

REGION FORWARDING

 REGION A

SERVER
FOLLOWER

SERVER SERVER
LEADER FOLLOWER

Nomad
HASHICORP

Region is Isolation Domain

1-N Datacenters Per Region

Flexibility to do 1:1 (Consul)

Scheduling Boundary

HASHICORP

Data Model

HASHICORP

Evaluations ~= State Change Event

HASHICORP

Create / Update / Delete Job

Node Up / Node Down

Allocation Failed

HASHICORP

“Scheduler” =
func(Eval) => []AllocUpdates

HASHICORP

Scheduler func’s can specialize

(Service, Batch, System, etc)

HASHICORP

Evaluation Enqueue

HASHICORP

Evaluation Dequeue

HASHICORP

Plan Generation

HASHICORP

Plan Execution

HASHICORP

External Event

Evalua?on Crea?on

Evalua?on Queuing

Evalua?on Processing

Op?mis?c Coordina?on

State Updates

HASHICORP

Server Architecture

Omega Class Scheduler

Pluggable Logic

Internal Coordination and State

Multi-Region / Multi-Datacenter

HASHICORP

Client Architecture

Broad OS Support

Host Fingerprinting

Pluggable Drivers

HASHICORP

Fingerprinting

Operating System

Hardware

Applications

Environment

Type Examples

Kernel, OS, Versions

CPU, Memory, Disk

Java, Docker, Consul

AWS, GCE

HASHICORP

Fingerprinting

Constrain Placement and Bin Pack

HASHICORP

Fingerprinting

“Task Requires Linux, Docker, and
PCI-Compliant Hardware”
expressed as Constraints

HASHICORP

Fingerprinting

“Task needs 512MB RAM and 1 Core”
expressed as Resource Ask

HASHICORP

Drivers

Execute Tasks

Provide Resource Isolation

HASHICORP

Containerized

Virtualized

Standalone

Docker

Qemu / KVM

Java Jar

Static Binaries

Rocket

HASHICORP

Containerized

Virtualized

Standalone

Docker

Rocket

Windows Server Containers

Qemu / KVM

Hyper-V

Xen

Java Jar

Static Binaries

C#

Nomad
HASHICORP

Workload Flexibility:

Schedulers

Fingerprints

Drivers

Job Specification

Nomad
HASHICORP

Operational Simplicity:

Single Binary

No Dependencies

Highly Available

HASHICORP

HASHICORP

Nomad 0.1

Released in October

Service and Batch Scheduler

Docker, Qemu, Exec, Java Drivers

HASHICORP

Case Study

HASHICORP

Case Study

3 servers in NYC3

100 clients in NYC3, SFO1, AMS2/3

1000 Containers

HASHICORP

Case Study

<1s to schedule

1s to first start

6s to 95%

8s to 99%

HASHICORP

Nomad 0.2 - Service Workloads

Service Discovery

System Scheduler

Restart Policies

Enhanced Constraints

HASHICORP

Nomad 0.3 - Batch Workloads

Cron

Job Queuing

Latency-Aware Scheduling

HASHICORP

Production Hardening

Nomad 0.2 in Prod

Stress Testing

Atlas Integration

Nomad
HASHICORP

Cluster Scheduler

Easily Deploy Applications

Job Specification

Nomad
HASHICORP

Higher Resource Utilization

Decouple Work from Resources

Better Quality of Service

HASHICORP

Thanks!
Q/A

