
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/337015923

AutoGRD: Model Recommendation Through Graphical Dataset Representation

Conference Paper · November 2019

DOI: 10.1145/3357384.3357896

CITATIONS

0
READS

259

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Sentence level sentiment analysis View project

AutoGRD: Model Recommendation Through Graphical Dataset Representation View project

Noy Cohen-Shapira

Ben-Gurion University of the Negev

1 PUBLICATION 0 CITATIONS

SEE PROFILE

Lior Rokach

Ben-Gurion University of the Negev

318 PUBLICATIONS 11,945 CITATIONS

SEE PROFILE

Bracha Shapira

Ben-Gurion University of the Negev

176 PUBLICATIONS 5,546 CITATIONS

SEE PROFILE

Gilad Katz

24 PUBLICATIONS 255 CITATIONS

SEE PROFILE

All content following this page was uploaded by Noy Cohen-Shapira on 10 November 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/337015923_AutoGRD_Model_Recommendation_Through_Graphical_Dataset_Representation?enrichId=rgreq-acd23c6f28bf09eade3a39f3b91333d3-XXX&enrichSource=Y292ZXJQYWdlOzMzNzAxNTkyMztBUzo4MjM3MDI5MjUxMDMxMDVAMTU3MzM5NzQ4OTU1Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/337015923_AutoGRD_Model_Recommendation_Through_Graphical_Dataset_Representation?enrichId=rgreq-acd23c6f28bf09eade3a39f3b91333d3-XXX&enrichSource=Y292ZXJQYWdlOzMzNzAxNTkyMztBUzo4MjM3MDI5MjUxMDMxMDVAMTU3MzM5NzQ4OTU1Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Sentence-level-sentiment-analysis?enrichId=rgreq-acd23c6f28bf09eade3a39f3b91333d3-XXX&enrichSource=Y292ZXJQYWdlOzMzNzAxNTkyMztBUzo4MjM3MDI5MjUxMDMxMDVAMTU3MzM5NzQ4OTU1Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/AutoGRD-Model-Recommendation-Through-Graphical-Dataset-Representation?enrichId=rgreq-acd23c6f28bf09eade3a39f3b91333d3-XXX&enrichSource=Y292ZXJQYWdlOzMzNzAxNTkyMztBUzo4MjM3MDI5MjUxMDMxMDVAMTU3MzM5NzQ4OTU1Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-acd23c6f28bf09eade3a39f3b91333d3-XXX&enrichSource=Y292ZXJQYWdlOzMzNzAxNTkyMztBUzo4MjM3MDI5MjUxMDMxMDVAMTU3MzM5NzQ4OTU1Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Noy_Cohen-Shapira2?enrichId=rgreq-acd23c6f28bf09eade3a39f3b91333d3-XXX&enrichSource=Y292ZXJQYWdlOzMzNzAxNTkyMztBUzo4MjM3MDI5MjUxMDMxMDVAMTU3MzM5NzQ4OTU1Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Noy_Cohen-Shapira2?enrichId=rgreq-acd23c6f28bf09eade3a39f3b91333d3-XXX&enrichSource=Y292ZXJQYWdlOzMzNzAxNTkyMztBUzo4MjM3MDI5MjUxMDMxMDVAMTU3MzM5NzQ4OTU1Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ben-Gurion_University_of_the_Negev?enrichId=rgreq-acd23c6f28bf09eade3a39f3b91333d3-XXX&enrichSource=Y292ZXJQYWdlOzMzNzAxNTkyMztBUzo4MjM3MDI5MjUxMDMxMDVAMTU3MzM5NzQ4OTU1Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Noy_Cohen-Shapira2?enrichId=rgreq-acd23c6f28bf09eade3a39f3b91333d3-XXX&enrichSource=Y292ZXJQYWdlOzMzNzAxNTkyMztBUzo4MjM3MDI5MjUxMDMxMDVAMTU3MzM5NzQ4OTU1Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lior_Rokach?enrichId=rgreq-acd23c6f28bf09eade3a39f3b91333d3-XXX&enrichSource=Y292ZXJQYWdlOzMzNzAxNTkyMztBUzo4MjM3MDI5MjUxMDMxMDVAMTU3MzM5NzQ4OTU1Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lior_Rokach?enrichId=rgreq-acd23c6f28bf09eade3a39f3b91333d3-XXX&enrichSource=Y292ZXJQYWdlOzMzNzAxNTkyMztBUzo4MjM3MDI5MjUxMDMxMDVAMTU3MzM5NzQ4OTU1Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ben-Gurion_University_of_the_Negev?enrichId=rgreq-acd23c6f28bf09eade3a39f3b91333d3-XXX&enrichSource=Y292ZXJQYWdlOzMzNzAxNTkyMztBUzo4MjM3MDI5MjUxMDMxMDVAMTU3MzM5NzQ4OTU1Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lior_Rokach?enrichId=rgreq-acd23c6f28bf09eade3a39f3b91333d3-XXX&enrichSource=Y292ZXJQYWdlOzMzNzAxNTkyMztBUzo4MjM3MDI5MjUxMDMxMDVAMTU3MzM5NzQ4OTU1Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bracha_Shapira?enrichId=rgreq-acd23c6f28bf09eade3a39f3b91333d3-XXX&enrichSource=Y292ZXJQYWdlOzMzNzAxNTkyMztBUzo4MjM3MDI5MjUxMDMxMDVAMTU3MzM5NzQ4OTU1Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bracha_Shapira?enrichId=rgreq-acd23c6f28bf09eade3a39f3b91333d3-XXX&enrichSource=Y292ZXJQYWdlOzMzNzAxNTkyMztBUzo4MjM3MDI5MjUxMDMxMDVAMTU3MzM5NzQ4OTU1Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ben-Gurion_University_of_the_Negev?enrichId=rgreq-acd23c6f28bf09eade3a39f3b91333d3-XXX&enrichSource=Y292ZXJQYWdlOzMzNzAxNTkyMztBUzo4MjM3MDI5MjUxMDMxMDVAMTU3MzM5NzQ4OTU1Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bracha_Shapira?enrichId=rgreq-acd23c6f28bf09eade3a39f3b91333d3-XXX&enrichSource=Y292ZXJQYWdlOzMzNzAxNTkyMztBUzo4MjM3MDI5MjUxMDMxMDVAMTU3MzM5NzQ4OTU1Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gilad_Katz?enrichId=rgreq-acd23c6f28bf09eade3a39f3b91333d3-XXX&enrichSource=Y292ZXJQYWdlOzMzNzAxNTkyMztBUzo4MjM3MDI5MjUxMDMxMDVAMTU3MzM5NzQ4OTU1Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gilad_Katz?enrichId=rgreq-acd23c6f28bf09eade3a39f3b91333d3-XXX&enrichSource=Y292ZXJQYWdlOzMzNzAxNTkyMztBUzo4MjM3MDI5MjUxMDMxMDVAMTU3MzM5NzQ4OTU1Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gilad_Katz?enrichId=rgreq-acd23c6f28bf09eade3a39f3b91333d3-XXX&enrichSource=Y292ZXJQYWdlOzMzNzAxNTkyMztBUzo4MjM3MDI5MjUxMDMxMDVAMTU3MzM5NzQ4OTU1Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Noy_Cohen-Shapira2?enrichId=rgreq-acd23c6f28bf09eade3a39f3b91333d3-XXX&enrichSource=Y292ZXJQYWdlOzMzNzAxNTkyMztBUzo4MjM3MDI5MjUxMDMxMDVAMTU3MzM5NzQ4OTU1Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

AutoGRD: Model Recommendation Through
Graphical Dataset Representation

Noy Cohen-Shapira

Ben-Gurion University of the Negev

Beer-Sheva, Israel

noycohe@post.bgu.ac.il

Lior Rokach

Ben-Gurion University of the Negev

Beer-Sheva, Israel

liorrk@post.bgu.ac.il

Bracha Shapira

Ben-Gurion University of the Negev

Beer-Sheva

bshapira@post.bgu.ac.il

Gilad Katz

Ben-Gurion University of the Negev

Beer-Sheva, Israel

giladkz@post.bgu.ac.il

Roman Vainshtein

Ben-Gurion University of the Negev

Beer-Sheva, Israel

romanva@post.bgu.ac.il

ABSTRACT
The widespread use of machine learning algorithms and the high

level of expertise required to utilize them have fuelled the demand

for solutions that can be used by non-experts. One of the main chal-

lenges non-experts face in applying machine learning to new prob-

lems is algorithm selection – the identification of the algorithm(s)

that will deliver top performance for a given dataset, task, and

evaluation measure. We present AutoGRD, a novel meta-learning

approach for algorithm recommendation. AutoGRD first represents

datasets as graphs and then extracts their latent representation

that is used to train a ranking meta-model capable of accurately

recommending top-performing algorithms for previously unseen

datasets. We evaluate our approach on 250 datasets and demon-

strate its effectiveness both for classification and regression tasks.

AutoGRD outperforms state-of-the-art meta-learning and Bayesian

methods.

CCS CONCEPTS
•Computingmethodologies→Machine learning approach-
es; Information extraction; • Theory of computation→Machine

learning theory;

KEYWORDS
Meta-learning; Algorithm selection; AutoML; Dataset representa-

tion; Classification; Regression; Graph embedding

ACM Reference format:
Noy Cohen-Shapira, Lior Rokach, Bracha Shapira, Gilad Katz, and Roman

Vainshtein. 2019. AutoGRD: Model Recommendation Through Graphical

Dataset Representation. In Proceedings of The 28th ACM International Confer-
ence on Information and Knowledge Management, Beijing, China, November
3–7, 2019 (CIKM ’19), 10 pages.
https://doi.org/10.1145/3357384.3357896

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’19, November 3–7, 2019, Beijing, China
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00

https://doi.org/10.1145/3357384.3357896

1 INTRODUCTION
The explosive growth of digital information has led to the wide-

spread adoption of machine learning (ML) solutions. While ML

can assist in decision-making and data analysis, human expertise

is often still required. Human involvement is needed for two rea-

sons. First, domain experts may provide unique characteristics of

the domain which may drastically affect the performance of the

algorithms; and second, the large number of algorithms and hy-

perparameter configurations make brute force search infeasible.

Therefore, expert data-scientists are needed.

One of the main challenges in applying ML to a new problem is

algorithm selection – the identification of algorithms (or algorithm

families) that are likely to perform well on a given combination of

dataset, task, and evaluation measure [13]. Algorithm selection is

difficult, since the performance of an algorithm is primarily a "black

box" affected by multiple characteristics of the dataset, including

size, the number of features and their composition, the number

of classes, instance distribution etc. The complexity of algorithm

selection, as well as the time-consuming nature of testing multiple

configurations, underscore the need to automate this process.

The term automated machine learning (AutoML) is often used

to describe systems that aim to automate part or all of the ML

"pipeline". While several AutoML techniques addressed in prior

studies were aimed at automating the process of algorithm selec-

tion (Auto-Weka [31] and Auto-sklearn [13]), they require a great

deal of computational resources due to the need to run candidate

algorithms on the data. For large datasets, even a few runs may

take several hours.

An alternative approach for addressing the algorithm selection

challenge ismeta-learning, as proposed by several studies [1, 24, 26].
We argue that the existing approaches suffer from an inherent limita-

tion due to the fact that they only model the general characteristics

of the dataset (e.g., number of instances/features, imbalance, etc.)

and not the dependencies and interactions of the instances that

make up the dataset. By modeling these interactions in a graph and

creating embeddings that capture their essence, we show that we

can better infer datasets’ similarity and hence improve the selection

of learning algorithms.We present AutoGRD, a novelmeta-learning-

based method for algorithm recommendation. AutoGRD applies

a novel approach to model the co-occurrences of the dataset’s in-

stances, and then converts these co-occurrences into a graph. Next,

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China

821

https://doi.org/10.1145/3357384.3357896
https://doi.org/10.1145/3357384.3357896

the GCD algorithm [36] is applied in order to extract a latent rep-

resentation of the graph. By combining the latent representation

with a vector denoting the various classifiers, AutoGRD produces a

meta-model capable of recommending top-performing algorithms

for previously unseen datasets.

We evaluate AutoGRD on 250 datasets, testing our approach on

both classification and regression tasks. Our experiments show that

AutoGRD outperforms both other meta-learning based approaches

and the popular Auto-Weka framework. The latter result is par-

ticularly noteworthy, since Auto-Weka iteratively tests multiple

algorithms on the dataset at hand to select the best algorithm while

our approach does not perform any direct test. The code of the

AutoGRD algorithm will be publicly available
1
.

Our contributions in this study are as follows:

1)We propose amethod for creating novel fixed-size graph-based

embedding representations for datasets. These representations offer

new perspectives on the analyzed data .

2) We present an efficient and highly accurate meta-learning

approach for algorithm selection for any data type.

3) We empirically demonstrate the merits of our approach on

a large group of datasets and algorithms. Our results show that

AutoGRD is highly effective for both classification and regression

tasks.

2 RELATEDWORK
2.1 Automatic algorithm selection
Algorithm selection is one of the main challenges in applying ML

to a new dataset, with the need to take the dataset characteristics,

type of task, and evaluation measure into account. The algorithm

selection problem can be formally defined as follows: given a set

of learning algorithms L, a dataset D, a task T (e.g., classification

or regression), and an evaluation measure M , the goal of model

selection is to find an algorithm l∗ ∈ L that minimizes or maximizes

M [22, 31].

While it is usually necessary to rely on human expertise (i.e.,

data scientists) in order to find a solution to the algorithm selec-

tion problem, there has been increased interest in recent years in

AutoML solutions. These solutions perform an iterative selection

process to find suitable ML algorithms for a given dataset. Exist-

ing AutoML solutions for algorithm selection are typically based

on Bayesian optimization [14], evolutionary algorithms [23] deep

reinforcement learning [10], and budget-based evaluation [21].

Auto-Weka [31] was one of the first frameworks developed for

automating ML. Based on the Bayesian optimization framework

SMAC [18], Auto-Weka simultaneously tunes hyperparameters for

all learning algorithm models implemented in the Weka [17] open-

source software. Auto-sklearn [13] is a similar automated solution

which is based on scikit-learn library in Python. Auto-sklearn stacks

multiple models to achieve high predictive performance. TPOT [23]

is a Python-based framework that uses an evolutionary algorithm

to generate ML pipelines while optimizing their hyperparameters.

AlphaD3M [10] is a newer method which uses a reinforcement

learning approach and deep learning mechanisms for creating a

model that can predict pipeline performance.

1
in https://github.com/noycohen100/AutoGRD.git

While all of the above mentioned approaches are effective, they

are also computationally expensive (both in terms of running time

and resources), because they require an iterative search of different

model configurations. In addition, when given a new dataset, most

of the above solutions have to start the search for a suitable ML

algorithm “from scratch”. This limitation is particularly problematic

when tackling large datasets which require long running times.

Meta-learning ("learning about learning") is an alternative ap-

proach for dealing with algorithm selection. Meta-learning algo-

rithms aim to learn the behavior of learning algorithms and which

features of the dataset contribute to the improved performance of

one algorithm over others [7]. This knowledge can then be used

to better identify high-performing algorithms for solving a task on

previously unseen datasets [28].

As described by [26], a meta-learning framework begins with a

collection of learning algorithms and datasets. The framework ex-

tracts meta-features that capture (or aspire to capture) the “essence”

of a given dataset. Each learning algorithm is then applied on each

dataset and estimates the performance. The framework collects the

meta-features and the performance of the evaluated learning algo-

rithms as meta-data. Then, a learning algorithm, a meta-learner, is

trained on the meta-data and produces a meta-model that matches

the values of the meta-features with the most suitable algorithm

for each dataset. Finally, for each new dataset, the meta-learning

approach extracts the meta-features and uses the meta-model to

recommend algorithm(s) for that dataset.

The meta-features used in existing work are commonly divided

into three categories [2, 34]:

1) Statistical and information-theoretic meta-features di-
rectly describe the training set. These meta-features can be simple

(e.g., number of training instances), statistical (e.g., mean, variance),

or information theory-based. An example of a comprehensive list

of meta-features can be found in [19].

2) Model-based meta-features describe the learning model to

be applied on a given dataset, e.g., the number of leaf nodes of a

decision tree [24].

3) Landmarker meta-features are generated by using the es-

timated performance of a simple learning algorithm on a given

dataset for a quick performance assessment [1].

While the design of meta-features is an important process, it

is also considered a major challenge for meta-learning [2, 3, 33];

given this difficulty, meta-feature extraction has recently been the

subject of research aimed at its systematization. The systematic

framework for meta-feature extraction proposed in [26] is based

on three components: meta-function (e.g., entropy), object (e.g.,

set of independent variables), and post-processing function (e.g.,

average value). By applying the meta-function to all possible ob-

jects and processing the results with all possible post-processing

functions, the method enables the systematic generation of sets of

meta-features.

Existing meta-learning-based approaches for algorithm selec-

tion largely focus on modeling the relationships between certain

data characteristics and the performance of ML algorithms [7, 20].

Recently, a study by Vainshtein et al. [32] proposed AutoDi, a frame-

work for combining two types of meta-features: dataset-based and

embedding-based. With the latter, features were extracted from a

large corpus of academic publications; these features were used to

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China

822

train a ranking model using XGBoost. Given a new dataset, Au-

toDi produces a list of algorithms, sorted by their predicted efficacy

on the data. The dataset-based features of AutoDi are based on

the work by Katz et al. [19], who used this type of features for

the purpose of automatic feature engineering. In contrast to the

above-mentioned studies, our approach utilizes a different type of

meta-features which is extracted based on instance co-occurrence.

2.2 Graph representation by embedding
Graphs have been used for modeling entity interactions in various

fields,including social networks and biological networks [15]. The

ever-increasing amount of data has fuelled the search for more

efficient forms of representation.

Graph embedding is currently the state-of-the-art graph represen-
tation approach. Its aim is to project a graph into a low-dimensional

space (of size d), while preserving some of the connections between

the vertices in the original graph [5]. Goyal et al. [15] define graph

embedding as: "given a graph G = (V ,E), graph embedding is a

mapping f : vi → yi ∈ R
d ,∀i ∈ [n] such that n = |V |, d << |V |,

and the goal of f is to preserve some proximity measure defined

on graph G".

While earlier graph embedding approaches employed factoriza-

tion methods [27], these methods often failed to capture the global

structure of the graph. This shortcoming led to the development of

current embedding-based methods, which are both more adept at

representing global structures while also being more scalable. One

such solution is LINE [30], a proximity-based method which utilizes

both first and second-order methods for generating the embedding.

Another approach for graph embedding is based on random

walks. Two frameworks which utilize this approach are DeepWalk

[25] and node2vec [16], although the latter employs bias-based

random walks. Both approaches strive to preserve the high-order

proximity among nodes by maximizing the probability of a subse-

quent node occurring in fixed length random walks [15]. In general,

node2vec is considered a better performer than DeepWalk due to

its ability to iterate between breadth-first and depth-first searches.

While all of the above-mentioned methods produce a vector rep-

resentation for each vertex in a d-dimensional space, they do not

provide a fixed size matrix of the graph representation which is re-

quired for many ML tasks including the one presented in this study.

One approach used to address this shortcoming was presented in

[36], where the authors propose the graphlet correlation distance
(GCD) method.

Graphlets are small, induced subgraphs that appear at any fre-

quency, whice are generated by selecting a small group of nodes

in a graph along with all of their inter-connecting edges (no outer

edges are selected). This approach utilizes automorphism orbits,

which are used to capture topologically symmetrical nodes in a

graphlet. For further reading we refer the reader to [35]. By using

graphlets, the authors produce a representation for each vertex that

contains the exposed and latent properties of the network topology.

Based on the vertices’ representation, GCD enables the creation of

anmXm embedding representation matrix of the graph referred to

as the graphlet correlation matrix (GCM), wherem is a configurable

parameter.

3 MOTIVATION
The ever-increasing size of datasets, as well as the growing number

of learning algorithms, makes the identification of top-performing

algorithms for a given dataset an extremely challenging task. Since

the computational cost of training multiple algorithms is often pro-

hibitive, there is a clear need for an efficient approach capable of

producing a short (and preferably ranked) list of promising candi-

dates. This list could then be used “as is” or serve as the basis of

more focused exploration..

Our work in this study is based on the hypothesis that the per-

formance of a given learning algorithm li on dataset dj – given by

f(dj ,li) – is dependent, to a large extent, on the latent connections

among the instances of the dataset. We further hypothesize that

by modeling these latent connections (i.e., embeddings) we will

be able to infer dataset similarity with respect to algorithm per-

formance. In other words, we hypothesize that given a function д
which generates dataset embeddings, g(d1) ≈g(d2)), will result in
f(g(d1),li) ≈ f (д((d2),li)).

In this study we use the classification models generated by mul-

tiple decision trees (i.e., decision forests) in order to generate the

dataset embeddings. While decision forests may not be an intuitive

choice, a recent study by Z. Zhou and J. Feng [37] has shown that

the probability distributions produced by decision forests, when

stacked, can successfully model latent factors and achieve perfor-

mance competitive with that of deep neural networks in various

tasks. Another study by the same researchers [11] shows that this

technique could be similarly applied to the creation of autoencoders.

Our approach builds on the above-mentioned studies but with

some significant differences. While we also use decision forests

to analyze datasets, we don’t use the classification distribution or

stacking. Instead, we analyze the co-occurrences of the dataset’s

samples in the leaves of the various decision trees and use them to

construct a graph representation. We then use the GCD algorithm

(see Subsection 2.2) to create a fixed-size representation of our

graph. This fixed size representation can then be easily trained to

produce a meta-model capable of recommending high-performing

algorithms for a given dataset.

4 THE PROPOSED METHOD
4.1 Overview
AutoGRD is a meta-learning framework for ranking the perfor-

mance of learning algorithms. The framework consists of two

phases: train and test. During the train phase, we analyze mul-

tiple datasets and obtain the meta-data needed to train our meta-

model. This phase is comprised of three main steps: representation,
extraction and modeling. During the test phase we utilize the gener-
ated meta-model to predict algorithm performance. The test phase

consists of three main steps: representation, extraction and predic-
tion. The representation and extraction steps are identical for both

phases. Next we review each phase in detail.

4.2 The train phase
During the train phase we evaluate multiple classification or re-

gression algorithms on a large group of diverse datasets in order to

obtain a large corpus that is then used to train our meta-model. The

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China

823

complete training process is described in Figure 1; this is followed

by a description of each step.

Dataset 1Dataset 1

Dataset 2Dataset 2

Classification
Random Forest

Generation
Graphical Representation

Algorithm
Performance

Meta-
Features

Training
 Ranking Meta-Learning Model

Ranking
Meta-Learning Model

......

Dataset nDataset n

ML Algorithm 1

ML Algorithm 2

ML Algorithm 1

ML Algorithm 2

1

2

3

4

Extraction
Graphical Meta-Features

ML Algorithm n

...

+

 Task

 +
Evaluation

Measure

Figure 1: AutoGRD training flow

4.2.1 The representation step: generating graphical representa-
tions of datasets. The intuition behind our representation is that

datasets which have a large degree of similarity are likely to induce

similar performance from learning algorithms so that

by analyzing dataset similarity we will be able to infer algo-

rithm performance for previously unseen datasets. Furthermore,

we suggest that dataset similarity can be expressed through instance

distribution and correlation. Therefore, by creating hierarchical rep-

resentations of the instances of multiple datasets’, we are able to

extract latent graphical features that can quantify datasets simi-

larity. Finally, we hypothesize that these latent graphical features

which model the interactions among the dataset’s instances, are

more informative than dataset-level meta-features, such as number

of instances, number of features, value distributions, etc., and will

therefore result in more accurate recommendation of algorithms

In order to obtain the dataset instance distribution representation

for a given dataset D, we apply a two-step process of classification
and generation:
Classification. We apply the Random Forest algorithm, a popular

ensemble method, to create a hierarchical representation of the

datasets. The algorithm produces multiple decision trees, which are

trained on random subsets of features and instances of the original

dataset. The trees’ output is then combined to produce the final

output (for a comprehensive review of the algorithm we refer the

reader to [29]). Next, we use the leaves of all generated decision

trees for representing the training instances. Our eventual goal is

to represent the dataset as a graph where the vertices represent

the dataset’s instances and the edges indicate the existence of a

sufficiently high co-occurrence score among them.More specifically,

for each possible pair of instances we count the number of leaves

in which they co-appear. We denote this value as the co-occurrence
score.

Random Forest was chosen for calculating the relationship be-

tween instances for two reasons. First, this algorithm is able to

achieve high predictive performance for classification tasks [12]

with relative low computational cost and without the need to tune

the hyper-parameters. Second, we are interested in calculating the

relationship between a pair of instances with regard to the target

attribute. Standard similarity measures, such as Euclidean distance

or cosine similarity, are based on all of the features in the dataset,

regardless of the target variable; thus, irrelevant features can affect

the similarity values. In contrast, Random Forest consists of deci-

sion trees that select the most relevant features, and two instances

are considered similar according to a certain tree if they share the

same path from the root to the leaf.

The Random Forest model can be geometrically expressed as a

partition of the covariates space into many disjoint regions. Two

instances obtain the highest co-occurrence score when they reside

in the same region even if they are not necessarily identical. In-

stances that are located in adjacent regions share all but one leaf

and therefore still have a high co-occurrence score, although not

the highest score. Figure 2 illustrates this idea.

Figure 2: Geometric illustration of Random Forest

A and B fall in the same region in the forest, and therefore their

distance is equal to zero, i.e., high similarity; since A and C fall in

adjacent regions in the forest, their distance is equal to one. This

scoring is unlike other similarity measures (e.g., Euclidean distance

or cosine similarity), which would assign a value larger than zero

and smaller than one for these two cases, respectively.

To remove weak and coincidental co-occurrences, we remove the

weakest connections from our co-occurrence matrix. We set the

percentage of removed connections to 10%, based on the recom-

mendations found in [35]. Following this pruning, we refer to the

remaining co-occurrence scores as the filtered co-occurrence score
set. Like [35], we found that this process improves the quality of

the embeddings produced by the GCD algorithm and consequently

the performance of our algorithm.

Generation. We generate an unweighted and undirected graph

G = (V ,E). Vertices represent instances and edge represent the

existence of a filtered co-occurrence score between two instances.

It should be noted that since the GCD algorithm does not apply

to weighted graphs, the actual co-occurrence value is only used

for the initial filtering of the edges. The representation process is

presented in Figure 3 and Algorithm 1.

4.2.2 The extraction step: meta-feature generation. In this step

we use the GCD method to generate the embedding representation

of the graph described above. One advantage of GCD is that the size

of its output can be predefined. This trait enables us to create fixed-

size representations for graphs of varying sizes, thus simplifying

this step.

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China

824

Algorithm 1 Generating graphical representations of dataset

1: procedure GenerateGraph(dataset D)
2: decisionTrees ← RandomForest(D)
3: leaves ← decisionTrees .GetLeaves()
4: leaves ← RemoveLowCoOccurrences(leaves)
5: E← ∅
6: V← D.GetInstances()
7: for each (A, B) in V do
8: CoScore ← leaves .GetCoOcurrence(A, B)
9: E ← E∪(A, B, CoScore)

10: return (V, E)

Inst. X1 Forest

Inst. X2 Forest

… …

… …

Inst.
X1

Inst.
X2

The generated graph

2

Classification Generation

Figure 3: Representation step. Inst. X1 and Inst. X2 fall in
the same leaf in two trees, and therefore the co-occurrence
score of them is two.

4.2.3 The modeling step: ranking meta-learning model. To train

a ranking classifier capable of utilizing the meta-features described

above, we produce a large labeled training set using the following

process:

1) Given a set of datasets D and a set of learning algorithms L,
we evaluate all combinations of d ∈ D and l ∈ L. We denote the

result of this evaluation as Rl,d .
2) For each combination of d ∈ D and l ∈ L, we create a set of

meta-features that consists of the following: a)Md – the set of meta-

features generated in the extraction step (described in Subsection

4.2.2); b) Ml – a single discrete feature describing l ; and c) Rl,d –

the results of the evaluation of l on d .
3) We train the XGBoost algorithm [6] on the joint set {Md ∪

Ml ,Rl,d } where we aim to predict the true ranking of algorithm l
based on its performance Rl,d . We chose XGBoost as our ranking

algorithm, since previous work [4] has shown that it well suited to

this.

The result of this step is a trained meta-ranking model, capable of

ranking every l ∈ L for previously unseen datasets. The modeling

step is presented in Algorithm 2.

4.3 The test phase
In this phase, we attempt to produce a list of learning algorithms,

ranked by their predicted performance on a previously unseen

dataset dnew . This process is described in Figure 4 and Algorithm

3. The steps of this phase are as follows:

Algorithm 2 Ranking meta-learning model generation

1: procedure GenerateModel(datasets D, algorithms L)
2: MetaFeatures← ∅
3: for each d in D do
4: Md ←MetaFeatureExtraction(d) ▷ See Section 4.2.2

5: for each l in L do
6: Rl,d ← EvaluatePerformance(d ,l)
7: Ml ← DiscreteFeatureExtraction(l)
8: f eatures ←(Md ∪Ml , Rl,d)
9: MetaFeatures ← (f eatures ∪MetaFeatures)

10: RankinдModel ← XGBoost (MetaFeatures)

11: return RankingModel

New
Dataset

New
Dataset

Classification Random
Forest

Generation
Graphical Representation

Best Algorithm
1

2

3

4

Extraction
Graphical Meta-Features

Ranking
Meta-Learnnig Model

+ Task

+ Evaluation Measure

Figure 4: AutoGRD testing flow

1) We generate Mdnew the set of meta-features described in

Section 4.2.2 for dnew .

2) For each l ∈ L, we generate Ml and concatenate it to a copy

ofMdnew .

3) Once Mdnew ∪ Ml has been generated for every l ∈ L, we
provide all meta-feature vectors to the trained XGBoost model and

use it to produce Rl,dnew – a ranked list of all algorithms, ordered

by their predicted performance.

5 EVALUATION
In our evaluation, we examine our method as a meta-learning ap-

proach, in terms of its accuracy in the task of recommending the

appropriate algorithm for a problem, and compare the advantages

of our method in this respect to those of other methods.

We evaluate AutoGRD for two types of tasks: classification and

regression. In our evaluation we used 150 and 100 datasets for the

classification and regression tasks, respectively. All datasets are

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China

825

Algorithm 3 Testing phase

1: procedure TestingPhase(dataset dnew , algorithms L)
2: Mdnew ← MetaFeatureExtraction(dnew) ▷ See Section

4.2.2

3: MetaFeatures← ∅
4: for each l in L do
5: Ml ← DiscreteFeatureExtraction(l)
6: features←(Mdnew ∪Ml)

7: MetaFeatures ← MetaFeatures ∪ f eatures

8: Rl,dnew ← RankinдModel .Rank(MetaFeatures) ▷ See

Algorithm 2

9: return Rl,dnew

available in the following online repositories: UCI,
2
, OpenML,

3
and

Kaggle.
4

5.1 Experimental setup
We used the following setup in all of our experiments:

1) For the purposes of training and evaluation, we used a leave-

one-out approach: for each evaluated dataset di , we trained the

ranking classifier using meta-features from dj ∈ D where i , j and
D is a collection of datasets.

2) Since the performance of Auto-Weka increases with running

time, we set its ’timeLimit’ parameter to 15 minutes in order to

provide a fair comparison of the methods.

3) Since many of the algorithms evaluated in this study are in

fact different implementations of the same algorithm (Random For-

est, for example, has eight variations), we group the algorithms

into “families". There are 17 and 10 families in the classification

and regression experiments, respectively.
5
AutoGRD and the meta-

learning baselines, therefore produce a ranked list of families rather

than algorithms. For each family, we automatically select the al-

gorithm with the highest performance on the dataset. This is the

same experimental setting used in [32].

4)We trained 500 trees with a maximal depth of eight and the

default configuration(as defined in scikit learn user guide) for the

minimum number of samples in a leaf node, for the Random Forest

algorithm in the representation step (see Subsection 4.2.1 for details)

5)We used the XGBoost algorithm to train the algorithm rank-

ing model. We chose the objective function: ’rank:pairwise’ and

set the algorithm’s parameters empirically using the leave-one-out

approach. Our model contains shallow trees with 220 and 150 esti-

mators for classification and regression, respectively. Shallow trees

are appropriate, because we have few instances and bushy trees

tend to overfit in this case.

6) For reasons of efficiency, we used a distributed MapReduce

algorithm [8] to generate the graph for each dataset.

7) The authors of [35] recommend setting the value m = 15

when dealing with a large collection of datasets. We trained the

GCD algorithm based on this recommendation, resulting in a GCM

2
https://archive.ics.uci.edu/ml

3
https://www.openml.org

4
www.kaggle.com

5
The list of families and their associated algorithms will be available in the code

repository

matrix of 15 ∗ 15 (see Subsection 4.2.2 for details). This configu-

ration resulted in the generation of 15
2 = 225 meta-features, a

number which could be reduced in half to 105, because the matrix

is symmetrical.

5.2 Measures
1) Since our goal is to recommend the top-performing algorithm

for a given dataset, task and evaluation measure combination, we

used the relative maximum value (RMV) measure. For each learning

algorithm, RMV calculates the ratio between the evaluationmeasure

value that an algorithm achieved to the best value achieved by any

learning algorithm in the same setting. For example, if the top

performing algorithm on the German credit dataset achieved an

accuracy of 99.5% and another algorithm achieved an accuracy of

95%, their RMV values would be one and 0.954, respectively.

2)We used the accuracy measure for the evaluation of the clas-

sification task and - Mean Squared Error (MSE) measure for the

regression task. As explained above, these two values were used to

calculate the RMV.

5.3 Baselines
We compare AutoGRD to four baselines: (a) A brute-force evalua-

tion of all possible algorithms. This baseline yields the best possible

results, but it is expensive both in time and computing resources.

We calculate the RMV measure using this baseline. (b) The dataset-
based version of AutoDi, proposed in the study by [32]. Like Au-

toGRD, AutoDi is a meta-learning approach that does not require

exhaustive evaluation of all algorithms. (c) The Random Forest

algorithm, which is the algorithm with the highest overall average
performance across all datasets, both for the regression and clas-

sification tasks. (d) Auto-Weka, a popular Bayesian approach for

automatic algorithm selection.

5.4 Evaluation results: classification
We conducted our experiments on 150 datasets

6
, all available from

online repositories. In order to conduct our evaluation, we had to

obtain the performance of every possible dataset/algorithm combi-

nation. We obtained this information from two sources:

1) For 102 datasets, the performance for all algorithms was ob-

tained from the extensive study conducted by [12].

2) For the remaining 48 datasets, we obtained various algorithms’

accuracy measures from the OpenML repository. Since the OpenML

platform enables users to submit algorithms and have their perfor-

mance evaluated, we downloaded and extracted the information

relevant to the algorithms we evaluate. All of the datasets had at

least 60 unique submissions.

Overall, we evaluated seventeen families of classification algo-

rithms, consisting of a total of 179 algorithms.

The results of our evaluation are shown in Table 1 and Figure 5,

where it is clear that AutoGRD has both the highest average RMV

and the smallest standard deviation of all of the methods evaluated.

We used the Friedman test to validate the statistical significance

of differences between the evaluated methods [9]. The null hy-

pothesis that the four methods perform the same and the observed

6
https://bit.ly/2LNKPex

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China

826

differences are merely random was rejected with p < 0.01. We pro-

ceeded with Wilcoxon signed-rank post-hoc tests and conclude

that the differences between AutoGRD and all other methods were

found to be statistically significant with p<0.01.

Table 1: The average RVM of the evaluated methods over
150 classification datasets. ’*’ denotes that the difference
from other values in the same line is statistically significant
(p<0.01).

Measure Random

Forest

AutoDi:

dataset-

based

Auto-Weka AutoGRD

Average

RMV

96.3 95.6 96.1 99.4 (*)(*)(*)

Stdev (%) 6 7 6 1

Random Forest AutoDi: dataset-based Auto-Weka AutoGRD
Method

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
M

V

Classification methods performance

Figure 5: Distribution of the RMV scores for AutoGRD and
the various baselines (the solid boxes represent the IQR
based on performance).

Table 1 presents a comparison of our approach to the baselines.

Similarly to our approach, the Random Forest and AutoDi:dataset-

based baselines do not require an extensive evaluation of all al-

gorithms in order to produce a recommendation. It is clear that

AutoGRD outperforms both baselines by a wide margin, with a

minimum RMV of 0.87. In addition, it is clear that AutoGRD consis-

tently outperforms the Auto-Weka baseline both in performance

and consistency (i.e., small standard deviation). This conclusion is

also supported by Figure 5, which presents the distribution, median,

and range of the results.

The superior performance of our approach compared to Auto-

Weka is even more significant for the following two reasons: 1) The
average running time (during the test phase) of Auto-Weka per

dataset was 13 minutes, compared with one minute for AutoGRD;

2) Auto-Weka continuously interacts with the evaluated datasets by

testing different algorithms and adapting its exploration strategy

over time based on the results. AutoGRD, on the other hand, is a

“single-shot” method that only interacts with the dataset once in

order to obtain the meta-features. Despite this evident disadvantage,

AutoGRD is significantly better than Auto-Weka.

5.5 Discussion: classification results
Additional analysis of the results presented in the previous section

yielded a few other interesting insights regarding the differences

between AutoGRD and the baselines.

AutoGRD is consistently better at identifying the optimal
algorithm. In addition to obtaining the top RMV score (99.4%),

our approach achieved a perfect RMV on 118 of the 150 evaluated

datasets. As shown in Table 2, this value is significantly higher than

any of the baselines.

Table 2: The number of classification datasets for each
method for which the optimal algorithm is recommended.

Method Name Number of Datasets with Top Performance

Random Forest 27 (18%)

AutoDi: dataset-based 27 (18%)

Auto-Weka 47 (31.3%)

AutoGRD 118 (78.6%)

AutoGRD rarely recommends an ineffective algorithm. Fig-
ure 6 presents the RMV score distribution of AutoGRD and the

baselines (each approach only proposes its top selection). It is clear

to see that AutoGRD is much more effective in its predictions, with

RMV of ~0.9 as its lowest score.

0.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0
RMV

0
20
40
60
80

100
120
140

Nu
m

be
r o

f d
at

as
et

s AutoDi: dataset-based
AutoGRD
AutoWeka
Random Forest

Figure 6: RMV score distribution histogram of the evaluated
method across 150 classification datasets

Since bothAutoGRD andAutoDi: dataset-based aremeta-learning,

“single-shot” methods, we were interested in better understanding

the differences between them. Our analysis points to the following

conclusions:

AutoGRD ismore generic than theAutoDi: dataset-based. Ta-
ble 3 presents the three datasets for which AutoGRD and AutoDi:

dataset-based had the largest differences in performance (RMV

score). In each case, AutoGRD outperforms AutoDi by a significant

margin. These results lead us to conclude that our method is better

suited in cases in which the dataset in question is infrequently

used in the dataset collection or has characteristics that may make

commonly-used algorithms ineffective (i.e., a small number of fea-

tures or instances). In cases such as these, our approach’s ability to

represent the dataset as a graph can provide more useful insights

regarding the dataset, thus leading to better algorithm selection.

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China

827

Table 3: The top-3 datasets with the largest RMV differ-
ence between AutoGRD and AutoDi: dataset-based method
in classification task. Positive values represents better per-
formance by AutoGRD

.

Dataset Name Performance

Difference

Suggested Reason

image-segmentation 0.64 Infrequent dataset type in our

datasets collection

teachingAssistant 0.31 Small number of instances

visualizing-livestock 0.295 Small number of instances and

features

AutoGRD is consistently better than AutoDi: dataset-based.
Untilthis point we have evaluated the performance of AutoGRD and

the baselines based on their top recommendation (i.e., a single algo-

rithm). Now, in order to determine whether the overall recommenda-
tion quality of AutoGRD is higher than AutoDi: dataset-based, we

evaluate these algorithms based on their top-X-ranked algorithms.

In Figure 7 we present the RMV results when choosing the best-

performing algorithm out of the top-X recommendations. While

both methods show increased performance, AutoGRD achieves a

perfect RMV after evaluating only three algorithms. Furthermore,

even using the best of its top five recommendations does not bring

AutoDi: dataset-based to the same level of performance as AutoGRD

with a single pick. Next, we examine the average number of algo-

1 2 3 4 5
Recommended algorithms

0.96

0.97

0.98

0.99

1.00

Av
er

ag
e

R
M

V

AutoGRD
AutoDi: dataset-based

Figure 7: RMV averaged over 150 classification datasets ob-
tained by AutoGRD and AutoDi: dataset-based method vs
the number of recommended algorithms

rithms each algorithm needs to sample in order to achieve perfect

performance. For this purpose, we calculated the Mean Reciprocal

Rank (MRR), which is a statistic measure used for evaluating the

rank of the first correct answer:

MRR =
1

D

∑
i ∈D

1

ranki
(1)

Where D represents the number of datasets evaluated and ranki
is the ranking of the algorithmwith the highest performance achieved

for the particular dataset i . Table 4 presents the results of our anal-
ysis. AutoGRD’s MRR is significantly higher than that of AutoDi:

dataset-based (p<0.01), with much less algorithms needed, on aver-

age, to obtain a perfect RMV.

Comparing AutoGRD to a hybrid AutoDi. The top-performing

version of AutoDi reported in [32] was a hybrid of the dataset-based

Table 4: AutoGRD and AutoDi:dataset-based methods’ MRR
and the average rank position of the algorithm with the
maximum accuracy on 150 classification datasets.

Method Name MRR Average Rank Position of

Maximum Accuracy Algo-

rithm

AutoGRD 0.874 1.24

AutoDi: dataset-based 0.358 5.82

meta-features and information extracted from hundreds of thou-

sands of academic papers. While we do not consider this version,

which we refer to as AutoDi:hybrid, to be a “fair” competitor due

to its use of external data sources, we present a comparison of its

performance to AutoGRD.

Since AutoDi:hybrid was tested on the 102 datasets reported

in Fernández-Delgado et al. [12], we limit our evaluation to this

set. The results of the comparison are presented in Table 5, which

shows that AutoGRD outperforms AutoDi:hybrid by a statistically

significant margin (p<0.01 based on the Wilcoxon signed-rank test).

Not only did AutoGRD outperform AutoDi:hybrid with an RMV

of 99.4%, it also obtained a perfect RMV on 78 of the 102 analyzed

datasets, compared with only 47 for AutoDi:hybrid.

Table 5: Average RMV for AutoDi:hybrid and AutoGRD in
102 classification datasets from the study by [12]. ’*’ denotes
that the difference from other values in the same line is sta-
tistically significant (p<0.01).

Measure AutoDi:hybrid AutoGRD

Average RMV 98.6 99.4(*)

Stdev(%) 2 1

Number of datasets with top

performance

47 (46%) 76 (74.5%)

5.6 Evaluation results: Regression
We conducted our experiments on 100 datasets,

7
obtained both

from both the OpenML repository and Kaggle.
8
Since results were

not available for all datasets, we used the Weka ML framework [17]

to obtain results for all dataset/algorithm combinations. Overall,

we evaluated ten families of regression algorithms, consisting of a

total of 37 algorithms.

The results of our evaluation, presented in Table 6 and Figure

8, show again that AutoGRD outperforms the baselines. The score

distributions presented in Figure 8 support this conclusion.

We used the ANOVA test to validate the statistical significance

of differences between the evaluated methods. The null-hypothesis

that the four methods perform the same and the observed differ-

ences are merely random was rejected with p < 0.01. We proceeded

with Wilcoxon signed-rank post-hoc tests and conclude that Auto-

GRD outperforms the dataset-based version of AutoDi and Auto-

Weka with p<0.01 and the Random Forest algorithm with p<0.05.

7
https://bit.ly/2Qblppv

8
www.kaggle.com

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China

828

Table 6: Average RVM of the evaluated methods over 100
regression datasets. ’*’ and ’-’ denote that the difference
from other values in the same line is statistically significant
(p<0.01, p=0.05 respectively).

Measure Random

Forest

AutoDi:

dataset-

based

Auto-Weka AutoGRD

Average

RMV

94.88 90.23 84.7 96.66

(-)(*)(*)

Stdev (%) 14.75 21.77 28.34 10.15

Random Forest AutoDi: dataset-based Auto-Weka AutoGRD
Method

0.0

0.2

0.4

0.6

0.8

1.0

R
M

V

Regression methods performance

Figure 8: The distribution of the RMV scores for AutoGRD
and the various baselines. The solid boxes represent the IQR
based on performance.

5.7 Discussion: regression results
We compare the performance of AutoGRD to that of the meta-

learning baseline, AutoDi: dataset-based.

AutoGRD rarely recommends an ineffective algorithm. Sim-

ilarly to our analysis of the classification task, we again find that

AutoGRD is more consistent in recommending high-performing

algorithms (see Figure 9). Moreover, while AutoDi:dataset-based

occasionally recommends algorithms that produce an RMV value

of zero, the lowest value achieved by AutoGRD is 0.4.

0.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0
RMV

0

20

40

60

80

Nu
m

be
r o

f d
at

as
et

s AutoDi: dataset-based
AutoGRD

Figure 9: RMV distribution histogram of AutoGRD and
AutoDi:dataset-based across 100 regression datasets

AutoGRD is a more generic and robust solution.We analyzed

three cases in which the difference in performance between Au-

toGRD and AutoDi:dataset-based was the largest in an attempt to

identify the cause of the difference. The results of our analysis are

presented in Table 7. It is clear that our approach is capable of adapt-

ing to scenarios where data is scarce or has high dimensionality.

We argue that the results validate our hypothesis that modeling the

interactions among the instances of the dataset is more indicative

than only analyzing the general statistical traits of the dataset.

Table 7: Three datasets from the top-5 datasets with
the largest RMV difference between AutoGRD and
AutoDi:dataset-based in regression tasks. Positive val-
ues represent better performance by AutoGRD and vice
versa

Dataset Name Performance Dif-

ference

Suggested Reason

baseball-team 1 Small number of in-

stances

analcatdata-vehicle 0.98 Small number of in-

stances

tecator 0.78 Large number of features

AutoGRD is consistently better than AutoDi:dataset-based.
We examine overall recommendation quality for both methods by

analyzing the performance of the best top-X recommended algo-

rithms. The results, presented in Figure 10, show that AutoGRD is

consistently better than AutoDi, although the gap between the two

methods narrows considerably as more algorithms are evaluated.

Figure 10: RMV averaged over 100 regression datasets ob-
tained by AutoGRD and AutoDi: dataset-based method vs
the number of recommended algorithms.

1 2 3 4 5
Recommended algorithms

0.90

0.92

0.94

0.96

0.98

Av
er

ag
e

R
M

V

AutoGRD
AutoDi: dataset-based

It should be noted, however, that AutoGRD achieves an average

RMV of 99% after evaluating three algorithms on average, while

AutoDi requires five to achieve the same level of performance.

5.8 Running time
One possible shortcoming of AutoGRD is the complexity of the

GCD algorithm used to generate the latent meta-features (see Sub-

section 4.2.2). GCD has a worst-case complexity ofO(V 4), whereV
is the number of vertices in the analyzed graph. Table 8 presents the

running time of AutoGRD and AutoDi:dataset-based on different

sized datasets, both for classification and regression tasks. As men-

tioned previously, the running time of Auto-Weka is 13 minutes in

average.

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China

829

Table 8: The running time of AutoGRD on various datasets.
The running time format is HH:MM:SS.

Dataset Name Dataset
Size

Task AutoGRD
Running
time

AutoDi:
dataset-
based
Running
time

breast-tissue 106 classification 00:00:07 00:00:01

autoHorse 203 regression 00:00:04 00:00:01

arrhythmia 452 classification 00:00:23 00:00:26

boston 506 regression 00:00:08 00:00:01

stock 950 regression 00:00:12 00:00:01

house-prices 1460 regression 00:01:31 00:00:02

contrac 1473 classification 00:04:29 00:00:01

cardiotocography-

10clases

2126 classification 00:09:21 00:00:01

While it is clear that running AutoGRD on large datasets will

require more time, the superior performance of our algorithm is

likely to justify the larger computational cost in many cases. One

should also bear in mind that solutions such as Auto-Weka require

trainingmultiple algorithms on the same dataset whice can also take

considerable time, particularly for complex ensemble algorithms.

Nonetheless, the complexity of the GCD algorithm is one aspect of

the algorithm we plan to address in future research.

6 CONCLUSIONS AND FUTUREWORK
In this study, we introduced AutoGRD, a meta-learning method for

algorithm recommendation. By proposing a novel way of repre-

senting datasets based on the interactions of their instances, we

were able to develop an effective meta-learning method for ranking

learning algorithms on previously unseen datasets. Our proposed

approach outperformsleading existing solutions such as AutoDi and

Auto-Weka, while also proving itself highly effective with “challeng-

ing” datasets (e.g., those with few instances or high dimensionality).

For future work, we plan to pursue two research directions. First,

we plan to further enhance the capabilities of AutoGRD by enabling

it to recommend both algorithms and hyperparameter configura-

tions, and deal with special datasets such as images. Second, we

intend to use graph approximation methods in order to create a

more efficient, scalable version of the GCD algorithm used in our

meta-feature generation.

ACKNOWLEDGMENTS
This work was supported in part by the Defense Advanced Research

Projects Agency (DARPA) Data-Driven Discovery of Models (D3M)

Program.

REFERENCES
[1] H. Bensusan and C. Giraud-Carrier. 2000. Discovering Task Neighbourhoods

through Landmark Learning Performances (PKDD ’00). 325–330.
[2] P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta. 2008. Metalearning: Appli-

cations to Data Mining. Springer Publishing Company, Incorporated.

[3] Pavel B. Brazdil, C. Soares, and Joaquim Pinto da Costa. 2003. Ranking Learn-

ing Algorithms: Using IBL and Meta-Learning on Accuracy and Time Results.

Machine Learning 50, 3 (2003), 251–277.

[4] Z. Cao, T. Qin, Tie-Yan Liu, Ming-Feng Tsai, and H. Li. 2007. Learning to Rank:

From Pairwise Approach to Listwise Approach (ICML ’07). 129–136.

[5] S. Cavallari, VincentW. Zheng, H. Cai, Kevin Chen-Chuan Chang, and E. Cambria.

2017. Learning Community Embedding with Community Detection and Node

Embedding on Graphs (CIKM ’17). 377–386.
[6] T. Chen and C. Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. CoRR

abs/1603.02754 (2016).

[7] Silvia N. das Dôres, L. Alves, Duncan D. Ruiz, and Rodrigo C. Barros. 2016. A

Meta-learning Framework for Algorithm Recommendation in Software Fault

Prediction (SAC ’16). 1486–1491.
[8] J. Dean and S. Ghemawat. 2008. MapReduce: Simplified Data Processing on Large

Clusters. Commun. ACM , 107–113.

[9] J. Demšar. 2006. Statistical Comparisons of Classifiers over Multiple Data Sets. J.
Mach. Learn. Res. 7 (2006), 1–30.

[10] I. Drori, Y. Krishnamurthy, R. Rampin, R. Lourenço, J. Ono, K. Cho, C. Silva,

and J. Freire. 2018. AlphaD3M: Machine Learning Pipeline Synthesis (AutoML
Workshop at ICML).

[11] J. Feng and Z. Zhou. 2018. Autoencoder by forest. In AAAI Conference on Artificial
Intelligence.

[12] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. 2014. Do we need

hundreds of classifiers to solve real world classification problems? J. Mach. Learn.
Res. 15 (2014), 3133–3181.

[13] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, and F. Hutter.

2015. Efficient and Robust Automated Machine Learning (NIPS’15). 2755–2763.
[14] M. Feurer, J. T. Springenberg, and F. Hutter. 2015. Initializing Bayesian Hyperpa-

rameter Optimization via Meta-learning (AAAI’15). 1128–1135.
[15] P. Goyal and E. Ferrara. 2018. Graph Embedding Techniques, Applications, and

Performance: A Survey. Knowl. -Based Syst. 151 (2018), 78–94.
[16] A. Grover and J. Leskovec. 2016. Node2Vec: Scalable Feature Learning for Net-

works (KDD ’16). 855–864.
[17] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P.r Reutemann, and I. Witten. 2009.

The WEKA data mining software: an update. ACM SIGKDD 11 (2009), 10–18.

[18] F. Hutter, Holger H. Hoos, and K. Leyton-Brown. 2011. Sequential Model-Based

Optimization for General Algorithm Configuration (LION’05). 507–523.
[19] G. Katz, E. C. R. Shin, and D. Song. 2016. ExploreKit: Automatic Feature Genera-

tion and Selection. In ICDM.

[20] C. Lemke, M. Budka, and B. Gabrys. 2015. Metalearning: a survey of trends and

technologies. Artificial Intelligence Review 44 (2015), 117–130.

[21] L. Li, Kevin G. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. 2017.

Efficient Hyperparameter Optimization and Infinitely Many Armed Bandits. In

5th International Conference on Learning Representations.
[22] M. A. Muñoz, Y. Sun, M. Kirley, and S. K. Halgamuge. 2015. Algorithm selection

for black-box continuous optimization problems: A survey on methods and

challenges. Information Sciences 317 (2015), 224 – 245.

[23] R. S. Olson and J. H. Moore. 2016. TPOT: A Tree-based Pipeline Optimization Tool

for Automating Machine Learning (Proceedings of Machine Learning Research),
Vol. 64. 66–74.

[24] Y. Peng, Peter A. Flach, C. Soares, and P. Brazdil. 2002. Improved Dataset Charac-

terisation for Meta-learning. 141–152.

[25] B. Perozzi, R. Al-Rfou, and S. Skiena. 2014. DeepWalk: Online Learning of Social

Representations (KDD). 701–710.
[26] F. Pinto, C. Soares, and J. Mendes-Moreira. 2016. Towards Automatic Generation

of Metafeatures. In Pacific-Asia. 215–226.
[27] M. D. Plummer. 2007. Graph factors and factorization: 1985–2003: A survey.

Discrete Mathematics 307 (2007), 791 – 821.

[28] M. Reif, F. Shafait, M. Goldstein, T. Breuel, and A. Dengel. 2012. Automatic

Classifier Selection for Non-Experts. Pattern Analysis and Applications 17 (2012),
83–96.

[29] L. Rokach. 2016. Decision forest: Twenty years of research. Information Fusion
27 (2016), 111 – 125.

[30] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. 2015. LINE: Large-scale

Information Network Embedding (WWW). 1067–1077.
[31] C. Thornton, F. Hutter, Holger H. Hoos, and K. Leyton-Brown. 2013. Auto-

WEKA: Combined Selection and Hyperparameter Optimization of Classification

Algorithms (KDD ’13). 847–855.
[32] R. Vainshtein, A. Greenstein-Messica, G. Katz, B. Shapira, and L. Rokach. 2018. A

Hybrid Approach for Automatic Model Recommendation. ACM, 1623–1626.

[33] J. Vanschoren. 2010. Understanding machine learning performance with experi-

ment databases. lirias. kuleuven. be (2010).
[34] Joaquin Vanschoren. 2018. Meta-Learning: A Survey. CoRR abs/1810.03548

(2018).

[35] O. Nebil Yaveroglu. 2013. Graphlet correlations for network comparison and

modelling : World Trade Network example.

[36] Ö. Yaveroğlu, N.l Malod-Dognin, D. Davis, Z. Levnajić, V. Janjic, R. Karapandza,

A.r Stojmirovic, and N. Przulj. 2014. In Scientific reports. 4547.
[37] Z. Zhou and J. Feng. 2017. Deep forest: Towards an alternative to deep neural

networks. (2017).

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China

830

View publication statsView publication stats

https://www.researchgate.net/publication/337015923

	Abstract
	1 Introduction
	2 Related Work
	2.1 Automatic algorithm selection
	2.2 Graph representation by embedding

	3 Motivation
	4 The Proposed Method
	4.1 Overview
	4.2 The train phase
	4.3 The test phase

	5 Evaluation
	5.1 Experimental setup
	5.2 Measures
	5.3 Baselines
	5.4 Evaluation results: classification
	5.5 Discussion: classification results
	5.6 Evaluation results: Regression
	5.7 Discussion: regression results
	5.8 Running time

	6 Conclusions and Future Work
	References

