### VALUE ITERATION NETWORKS

Aviv Tamar Joint work with Pieter Abbeel, Sergey Levine, Garrett Thomas, Yi Wu June 23, 2016

UC Berkeley

# Berkeley

Artificial Intelligence Research Laboratory

# INTRODUCTION

· Goal: autonomous robots

#### Robot, bring me the milk bottle!



 $\cdot$  Solution: RL?

- $\cdot\,$  Deep RL learns policies from high-dimensional visual input^{1,2}
- · Learns to act, but does it **understand**?
- $\cdot$  A simple test: generalization on grid worlds

<sup>1</sup>Mnih et al. Nature 2015 <sup>2</sup>Levine et al. JMLR 2016

#### INTRODUCTION





### Train



#### Train



#### Train



#### INTRODUCTION



Observation: reactive policies do not generalize well

Why don't reactive policies generalize?

- · A sequential task requires a planning computation
- $\cdot\,$  RL gets around that learns a mapping
  - $\cdot \ \ \mathsf{State} \to \mathsf{Q}\text{-}\mathsf{value}$
  - $\cdot~$  State  $\rightarrow$  action with high return
  - $\cdot~$  State  $\rightarrow$  action with high advantage
  - $\cdot \;\; \text{State} \to \text{expert action}$
  - $\cdot$  [State]  $\rightarrow$  [planning-based term]
- · Q/return/advantage: planning on training domains
- New task need to re-plan

In this work:

- Learn to plan
- $\cdot\,$  Policies that generalize to unseen tasks

## BACKGROUND

#### Planning in MDPs

- $\cdot \:$  States s  $\in \mathcal{S}$  , actions a  $\in \mathcal{A}$
- $\cdot$  Reward R(s, a)
- $\cdot$  Transitions P(s'|s,a)
- · Policy  $\pi(a|s)$
- · Value function  $V^{\pi}(s) \doteq \mathbb{E}^{\pi} \left[ \sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \middle| s_{0} = s \right]$
- · Value iteration (VI)

$$\begin{split} V_{n+1}(s) &= \max_{a} Q_n(s, a) \quad \forall s, \\ Q_n(s, a) &= R(s, a) + \gamma \sum_{s'} P(s'|s, a) V_n(s'). \end{split}$$

- $\cdot$  Converges to V\* = max<sub> $\pi$ </sub> V<sup> $\pi$ </sup>
- · Optimal policy  $\pi^*(a|s) = \arg \max_a Q^*(s, a)$

### Policies in RL / imitation learning

- · State observation  $\phi(s)$
- Policy:  $\pi_{\theta}(a|\phi(s))$ 
  - · Neural network
  - $\cdot\,$  Greedy w.r.t. Q (DQN)
- $\cdot$  Algorithms perform SGD, require  $abla_{ heta}\pi_{ heta}(\mathsf{a}|\phi(\mathsf{s}))$
- · Only loss function varies
  - · Q-learning (DQN)
  - · Trust region policy optimization (TRPO)
  - · Guided policy search (GPS)
  - · Imitation Learning (supervised learning, DAgger)
- $\cdot\,$  Focus on policy representation
- · Applies to model-free RL / imitation learning

### A MODEL FOR POLICIES THAT PLAN

· Start from a reactive policy



- · Add an explicit planning computation
- $\cdot$  Map observation to planning MDP  $\bar{\mathsf{M}}$



• Assumption: observation can be mapped to a useful (but **unknown**) planning computation

- · NNs map observation to reward and transitions
- · Later learn these



How to use the planning computation?

- Fact 1: value function = sufficient information about plan
- $\cdot$  Idea 1: add as features vector to reactive policy



 $\cdot\,$  Fact 2: action prediction can require only subset of  $\bar{V}^*$ 

$$\pi^*(\mathbf{a}|\mathbf{s}) = \operatorname*{arg\,max}_{\mathbf{a}} \mathbf{R}(\mathbf{s},\mathbf{a}) + \gamma \sum_{\mathbf{s}'} \mathbf{P}(\mathbf{s}'|\mathbf{s},\mathbf{a}) \mathbf{V}^*(\mathbf{s}')$$

· Similar to attention models, effective for learning<sup>1</sup>



<sup>1</sup>Xu et al. ICML 2015

- · Policy is still a mapping  $\phi(s) \rightarrow \text{Prob}(a)$
- · Parameters  $\theta$  for mappings  $\overline{R}$ ,  $\overline{P}$ , attention
- · Can we backprop?



#### How to backprop through planning computation?

# VALUE ITERATION = CONVNET

#### VALUE ITERATION = CONVNET

#### Value iteration

K iterations of:

$$\begin{split} \bar{Q}_{n}(\bar{s},\bar{a}) &= \bar{R}(\bar{s},\bar{a}) + \sum_{\bar{s}'} \gamma \bar{P}(\bar{s}'|\bar{s},\bar{a}) \bar{V}_{n}(\bar{s}') \\ \bar{V}_{n+1}(\bar{s}) &= \max_{\bar{a}} \bar{Q}_{n}(\bar{s},\bar{a}) \quad \forall \bar{s} \end{split}$$

#### <u>Convnet</u>



- $\cdot \ \bar{\mathcal{A}}$  channels in  $\bar{\mathsf{Q}}$  layer
- · Linear filters  $\iff \gamma \bar{\mathsf{P}}$
- · Tied weights
- · Channel-wise max-pooling
- · Best for locally connected dynamics (grids, graphs)
- · Extension input-dependent filters

# VALUE ITERATION NETWORKS

 $\cdot$  Use VI module for planning



· Value iteration network (VIN)



#### VALUE ITERATION NETWORK

- · Just another policy representation  $\pi_{\theta}(\mathsf{a}|\phi(\mathsf{s}))$
- · That can learn to plan
- Train like any other policy!
- · Backprop just like a convnet
- · Implementation few lines of Theano code



# **EXPERIMENTS**

Questions

- 1. Can VINs learn a planning computation?
- 2. Do VINs generalize better than reactive policies?

- · Supervised learning from expert (shortest path)
- $\cdot$  Observation: image of obstacles + goal, current state
- $\cdot\,$  Compare VINs with reactive policies

- · VI state space: grid-world
- VI Reward map: convnet
- $\cdot$  VI Transitions: 3 imes 3 kernel

- Attention: choose Q
  values
  for current state
- Reactive policy: FC, softmax



- · VI state space: grid-world
- VI Reward map: convnet
- $\cdot$  VI Transitions: 3 imes 3 kernel

- Attention: choose Q
  values
  for current state
- Reactive policy: FC, softmax



- · VI state space: grid-world
- · VI Reward map: convnet
- $\cdot$  VI Transitions: 3  $\times$  3 kernel

- Attention: choose Q
  values
  for current state
- · Reactive policy: FC, softmax



- · VI state space: grid-world
- · VI Reward map: convnet
- $\cdot\,$  VI Transitions: 3  $\times$  3 kernel

- Attention: choose Q
  values
  for current state
- Reactive policy: FC, softmax



- · VI state space: grid-world
- · VI Reward map: convnet
- $\cdot\,$  VI Transitions: 3  $\times$  3 kernel

- Attention: choose Q
  values
  for current state
- Reactive policy: FC, softmax


# **GRID-WORLD DOMAIN**

- · VI state space: grid-world
- · VI Reward map: convnet
- $\cdot\,$  VI Transitions: 3  $\times$  3 kernel

- Attention: choose Q
  values
  for current state
- · Reactive policy: FC, softmax



Compare with:

- · CNN inspired by DQN architecture<sup>1</sup>
  - · 5 layers
  - $\cdot\,$  Current state as additional input channel
- $\cdot\,$  Fully convolutional net (FCN)^2  $\,$ 
  - · Pixel-wise semantic segmentation (labels=actions)
  - $\cdot\,$  Similar to our attention mechanism
  - · 3 layers
  - $\cdot\,$  Full-sized kernel receptive field always includes goal

Training:

- · 5000 random maps, 7 trajectories in each
- · Supervised learning from shortest path

<sup>1</sup>Mnih et al. Nature 2015 <sup>2</sup>Long et al. CVPR 2015

## **GRID-WORLD DOMAIN**

Evaluation:

- · Action prediction error (on test set)
- · Success rate reach target without hitting obstacles

Results:

| Domain  | VIN        |         | CNN   |       | FCN   |       |
|---------|------------|---------|-------|-------|-------|-------|
|         | Prediction | Success | Pred. | Succ. | Pred. | Succ. |
|         | loss       | rate    | loss  | rate  | loss  | rate  |
| 8 × 8   | 0.004      | 99.6%   | 0.02  | 97.9% | 0.01  | 97.3% |
| 16 × 16 | 0.05       | 99.3%   | 0.10  | 87.6% | 0.07  | 88.3% |
| 28 × 28 | 0.11       | 97%     | 0.13  | 74.2% | 0.09  | 76.6% |

VINs learn to plan!







FCN





#### FCN









# Depth vs. Planning

- · Planning requires **depth** why not just add more layers?
- · Experiment: untie weights in VINs
  - · Degrades performance
  - · Especially with less data
- The VI structure is important

# Training using RL

- · Q-learning, TRPO<sup>1</sup>
- · Same network structure
- · Curriculum learning for exploration
- · Similar findings as supervised case



- · Grid-world with natural image observations
- $\cdot\,$  Overhead images of Mars terrain
- $\cdot$  Obstacle = slope of 10° or more
- · Elevation data not part of input



- · Grid-world with natural image observations
- $\cdot\,$  Overhead images of Mars terrain
- $\cdot$  Obstacle = slope of 10° or more
- · Elevation data not part of input



- · Grid-world with natural image observations
- $\cdot\,$  Overhead images of Mars terrain
- $\cdot$  Obstacle = slope of 10° or more
- · Elevation data not part of input



# Same grid-world VIN, 3 layers in $\bar{\mathsf{R}}$ convnet

|            | Pred. | Succ. |
|------------|-------|-------|
|            | loss  | rate  |
| VIN        | 0.089 | 84.8% |
| Best       | -     | 90.3% |
| achievable |       |       |



- Best achievable: train classifier with **obstacle labels**, predict map and plan
- $\cdot\,$  VIN  $did\,not$  observe any labeled obstacle data
- · Conclusion: can handle non-trivial perception

- $\cdot\,$  Move particle between obstacles, stop at goal
- · 4d state (position, velocity), 2d action (force)
- $\cdot\,$  Input: state + low-res (16  $\times$  16) map



- $\cdot$  Move particle between obstacles, stop at goal
- · 4d state (position, velocity), 2d action (force)
- $\cdot$  Input: state + low-res (16  $\times$  16) map



- · VI state space: grid-world
- Attention: 5 × 5 patch around current state

 Reactive policy: FC, Gaussian mean output



- · VI state space: grid-world
- $\cdot$  Attention: 5  $\times$  5 patch around current state

 Reactive policy: FC, Gaussian mean output



- · VI state space: grid-world
- $\cdot$  Attention: 5  $\times$  5 patch around current state

• Reactive policy: FC, Gaussian mean output



# Compare with:

- · CNN inspired by DQN architecture<sup>1,2</sup>
  - $\cdot$  2 conv layers + 2  $\times$  2 pooling + 3 FC layers

Training:

- $\cdot$  200 random maps
- $\cdot\,$  iLQG with unknown dynamics  $^3$
- · Supervised learning (equiv. 1 iteration of guided policy search)

<sup>1</sup>Mnih et al. Nature 2015 <sup>2</sup>Lillicrap et al. ICLR 2016 <sup>3</sup>Levine & Abbeel, NIPS 2014

Evaluation:

 $\cdot\,$  Distance to goal on final time

Results:

| Network | Train Error | Test Error |
|---------|-------------|------------|
| VIN     | 0.30        | 0.35       |
| CNN     | 0.39        | 0.58       |







# WEB-NAV DOMAIN - LANGUAGE-BASED SEARCH

- · "End-to-End Goal-Driven Web Navigation" Nogueira & Cho, arXiv 2016
- · Navigate website links to find a query

The Enigma was used commercially from the early 1920s on, and was also adopted by the military and governmental services of a number of nations—most famously by Nazi Germany before and during World War II.



- · "End-to-End Goal-Driven Web Navigation" Nogueira & Cho, arXiv 2016
- · Navigate website links to find a query

The Enigma was used commercially from the early 1920s on, and was also adopted by the military and governmental services of a number of nations—most famously by Nazi Germany before and during World War II.



- · "End-to-End Goal-Driven Web Navigation" Nogueira & Cho, arXiv 2016
- · Navigate website links to find a query

The Enigma was used commercially from the early 1920s on, and was also adopted by the military and governmental services of a number of nations—most famously by Nazi Germany before and during World War II.



- · "End-to-End Goal-Driven Web Navigation" Nogueira & Cho, arXiv 2016
- · Navigate website links to find a query

The Enigma was used commercially from the early 1920s on, and was also adopted by the military and governmental services of a number of nations—most famously by Nazi Germany before and during World War II.



- · "End-to-End Goal-Driven Web Navigation" Nogueira & Cho, arXiv 2016
- · Navigate website links to find a query

The Enigma was used commercially from the early 1920s on, and was also adopted by the military and governmental services of a number of nations—most famously by Nazi Germany before and during World War II.



- · "End-to-End Goal-Driven Web Navigation" Nogueira & Cho, arXiv 2016
- $\cdot$  Navigate website links to find a query
- · Observe:  $\phi(s)$ ,  $\phi(q)$ ,  $\phi(s'|s, a)$
- · Features: average word embeddings
- · Baseline policy:  $h = NN(\phi(s), \phi(q)), \quad \pi(a|s) \propto exp(\langle h, \phi(s') \rangle)$



- · Idea: use an approximate graph for planning
- · Wikipedia for Schools website (6K pages)
- Approximate graph: 1st+2nd level categories (3%)



- VI state space + transitions : approx. graph
- VI Reward map: weighted similarity to  $\phi(q)$

- Attention: average weighted by similarity to  $\phi(s')$
- Reactive policy: add feature to  $\phi(s')$



- VI state space + transitions : approx. graph
- VI Reward map: weighted similarity to  $\phi(q)$

- Attention: average weighted by similarity to  $\phi(s')$
- Reactive policy: add feature to  $\phi(s')$



Evaluation:

- · Success all correct actions within top-4 predictions
- · Test set 1: start from index page

Results:

| Network  | Success set 1 |  |
|----------|---------------|--|
| Baseline | 1025/2000     |  |
| VIN      | 1030/2000     |  |

Evaluation:

- · Success all correct actions within top-4 predictions
- · Test set 1: start from index page
- $\cdot\,$  Test set 2: start from random page

Results:

| Network  | Success set 1 | Success set 2 |
|----------|---------------|---------------|
| Baseline | 1025/2000     | 304/4000      |
| VIN      | 1030/2000     | 346/4000      |

Evaluation:

- · Success all correct actions within top-4 predictions
- · Test set 1: start from index page
- · Test set 2: start from random page

Results:

| Network  | Success set 1 | Success set 2 |
|----------|---------------|---------------|
| Baseline | 1025/2000     | 304/4000      |
| VIN      | 1030/2000     | 346/4000      |

Preliminary results: full English Wikipedia website, using wiki-school as approximate graph
## SUMMARY & OUTLOOK

- $\cdot$  Learn to plan  $\rightarrow$  generalization
- · Framework for planning based NN policies
  - Motivated by dynamic programming theory
  - Differentiable planner (VI = CNN)
  - · Compositionality of NNs perception & control
  - · Exploits flexible prior knowledge
  - $\cdot\,$  Simple to use

## **OUTLOOK & DISCUSSION**

- · Different planning algorithms
  - · MCTS
  - · Optimal control<sup>1</sup>
  - $\cdot$  Inverse RL<sup>2</sup>
- $\cdot$  How to obtain approximate planning problem
  - · Game manual in Atari
- $\cdot\,$  Generalization in  $RL^3$ 
  - · theory?
  - $\cdot$  benchmarks?
  - · Algorithms?
- $\cdot$  Generalization  $\neq$  lifelong RL, transfer learning<sup>4</sup>
- · Hierarchical policies, but not options/skills/etc.

<sup>1</sup>Watter et al. NIPS 2015
<sup>2</sup>Zucker & Bagnell, ICRA 2011
<sup>3</sup>Oh et al. ICML 2016, Barreto et al. arXiv 2016
<sup>4</sup>Taylor & Stone, JMLR 2009

## THANK YOU!