
value iteration networks

Aviv Tamar
Joint work with Pieter Abbeel, Sergey Levine, Garrett Thomas, Yi Wu
June 23, 2016

UC Berkeley



introduction



motivation

∙ Goal: autonomous robots

Robot, bring me the milk bottle!

http://www.wellandgood.com/wp-content/uploads/2015/02/Shira-fridge.jpg

∙ Solution: RL?

2



introduction

∙ Deep RL learns policies from high-dimensional visual input1,2

∙ Learns to act, but does it understand?
∙ A simple test: generalization on grid worlds

1Mnih et al. Nature 2015
2Levine et al. JMLR 2016

3



introduction

Conv Layers Fully Connected 
Layers

Action 
Probability

Reactive Policy

Image

4



introduction

Train

5



introduction

Train

5



introduction

Train

5



introduction

Train Test

Observation: reactive policies do not generalize well

5



introduction

Why don’t reactive policies generalize?

∙ A sequential task requires a planning computation
∙ RL gets around that – learns a mapping

∙ State → Q-value
∙ State → action with high return
∙ State → action with high advantage
∙ State → expert action
∙ [State] → [planning-based term]

∙ Q/return/advantage: planning on training domains
∙ New task – need to re-plan

6



introduction

In this work:

∙ Learn to plan
∙ Policies that generalize to unseen tasks

7



background



background

Planning in MDPs

∙ States s ∈ S , actions a ∈ A
∙ Reward R(s, a)
∙ Transitions P(s′|s, a)
∙ Policy π(a|s)
∙ Value function Vπ(s) .

= Eπ
[∑∞

t=0 γ
tr(st, at)

∣∣ s0 = s
]

∙ Value iteration (VI)

Vn+1(s) = max
a

Qn(s, a) ∀s,

Qn(s, a) = R(s, a) + γ
∑
s′

P(s′|s, a)Vn(s′).

∙ Converges to V∗ = maxπ Vπ

∙ Optimal policy π∗(a|s) = argmaxa Q∗(s, a)

9



background

Policies in RL / imitation learning

∙ State observation ϕ(s)
∙ Policy: πθ(a|ϕ(s))

∙ Neural network
∙ Greedy w.r.t. Q (DQN)

∙ Algorithms perform SGD, require ∇θπθ(a|ϕ(s))
∙ Only loss function varies

∙ Q-learning (DQN)
∙ Trust region policy optimization (TRPO)
∙ Guided policy search (GPS)
∙ Imitation Learning (supervised learning, DAgger)

∙ Focus on policy representation
∙ Applies to model-free RL / imitation learning

10



a model for policies that plan



a planning-based policy model

∙ Start from a reactive policy

12



a planning-based policy model

∙ Add an explicit planning computation
∙ Map observation to planning MDP M̄

∙ Assumption: observation can be mapped to a useful (but
unknown) planning computation

13



a planning-based policy model

∙ NNs map observation to reward and transitions
∙ Later - learn these

How to use the planning computation?
14



a planning-based policy model

∙ Fact 1: value function = sufficient information about plan
∙ Idea 1: add as features vector to reactive policy

15



a planning-based policy model

∙ Fact 2: action prediction can require only subset of V̄∗

π∗(a|s) = argmax
a

R(s, a) + γ
∑
s′

P(s′|s, a)V∗(s′)

∙ Similar to attention models, effective for learning1

1Xu et al. ICML 2015
16



a planning-based policy model

∙ Policy is still a mapping ϕ(s) → Prob(a)
∙ Parameters θ for mappings R̄, P̄, attention
∙ Can we backprop?

How to backprop through planning computation?
17



value iteration = convnet



value iteration = convnet

Value iteration

K iterations of:

Q̄n(s̄,ā)= R̄(s̄,ā)+
∑
s̄′
γP̄(s̄′|s̄, ā)V̄n(s̄′)

V̄n+1(s̄)=max
ā

Q̄n(s̄, ā) ∀s̄

Convnet

K recurrence

Reward Q

Prev. Value
New Value 

VI Module

P

R
V

∙ Ā channels in Q̄ layer
∙ Linear filters ⇐⇒ γP̄
∙ Tied weights
∙ Channel-wise max-pooling

∙ Best for locally connected dynamics (grids, graphs)
∙ Extension – input-dependent filters

19



value iteration networks



value iteration network

∙ Use VI module for planning

21



value iteration network

∙ Value iteration network (VIN)

22



value iteration network

∙ Just another policy representation πθ(a|ϕ(s))
∙ That can learn to plan
∙ Train like any other policy!
∙ Backprop – just like a convnet
∙ Implementation – few lines of Theano code

23



experiments



experiments

Questions

1. Can VINs learn a planning computation?
2. Do VINs generalize better than reactive policies?

25



grid-world domain



grid-world domain

∙ Supervised learning from expert (shortest path)
∙ Observation: image of obstacles + goal, current state
∙ Compare VINs with reactive policies

27



grid-world domain

∙ VI state space: grid-world
∙ VI Reward map: convnet
∙ VI Transitions: 3× 3 kernel

∙ Attention: choose Q̄ values
for current state

∙ Reactive policy: FC, softmax

28



grid-world domain

∙ VI state space: grid-world
∙ VI Reward map: convnet
∙ VI Transitions: 3× 3 kernel

∙ Attention: choose Q̄ values
for current state

∙ Reactive policy: FC, softmax

28



grid-world domain

∙ VI state space: grid-world
∙ VI Reward map: convnet
∙ VI Transitions: 3× 3 kernel

∙ Attention: choose Q̄ values
for current state

∙ Reactive policy: FC, softmax

28



grid-world domain

∙ VI state space: grid-world
∙ VI Reward map: convnet
∙ VI Transitions: 3× 3 kernel

∙ Attention: choose Q̄ values
for current state

∙ Reactive policy: FC, softmax

28



grid-world domain

∙ VI state space: grid-world
∙ VI Reward map: convnet
∙ VI Transitions: 3× 3 kernel

∙ Attention: choose Q̄ values
for current state

∙ Reactive policy: FC, softmax

28



grid-world domain

∙ VI state space: grid-world
∙ VI Reward map: convnet
∙ VI Transitions: 3× 3 kernel

∙ Attention: choose Q̄ values
for current state

∙ Reactive policy: FC, softmax

28



grid-world domain

Compare with:

∙ CNN inspired by DQN architecture1

∙ 5 layers
∙ Current state as additional input channel

∙ Fully convolutional net (FCN)2

∙ Pixel-wise semantic segmentation (labels=actions)
∙ Similar to our attention mechanism
∙ 3 layers
∙ Full-sized kernel – receptive field always includes goal

Training:

∙ 5000 random maps, 7 trajectories in each
∙ Supervised learning from shortest path
1Mnih et al. Nature 2015
2Long et al. CVPR 2015

29



grid-world domain

Evaluation:

∙ Action prediction error (on test set)
∙ Success rate – reach target without hitting obstacles

Results:

Domain VIN CNN FCN
Prediction Success Pred. Succ. Pred. Succ.

loss rate loss rate loss rate
8× 8 0.004 99.6ҍ 0.02 97.9ҍ 0.01 97.3ҍ
16× 16 0.05 99.3ҍ 0.10 87.6ҍ 0.07 88.3ҍ
28× 28 0.11 97ҍ 0.13 74.2ҍ 0.09 76.6ҍ

VINs learn to plan!

30



grid-world domain

Results:

31



grid-world domain

Results:

31



grid-world domain

Results:

VIN FCN

31



grid-world domain

Results:

VIN FCN

31



grid-world domain

Results:

31



grid-world domain

Depth vs. Planning

∙ Planning requires depth – why not just add more layers?
∙ Experiment: untie weights in VINs

∙ Degrades performance
∙ Especially with less data

∙ The VI structure is important

32



grid-world domain

Training using RL

∙ Q-learning, TRPO1

∙ Same network structure
∙ Curriculum learning for exploration
∙ Similar findings as supervised case

1Schulman et al. ICML 2015 33



mars-navigation domain



mars-navigation domain

∙ Grid-world with natural image observations
∙ Overhead images of Mars terrain
∙ Obstacle = slope of 10◦ or more
∙ Elevation data not part of input

35



mars-navigation domain

∙ Grid-world with natural image observations
∙ Overhead images of Mars terrain
∙ Obstacle = slope of 10◦ or more
∙ Elevation data not part of input

35



mars-navigation domain

∙ Grid-world with natural image observations
∙ Overhead images of Mars terrain
∙ Obstacle = slope of 10◦ or more
∙ Elevation data not part of input

35



mars-navigation domain

Same grid-world VIN, 3 layers in R̄ convnet

Pred. Succ.
loss rate

VIN 0.089 84.8ҍ
Best - 90.3ҍ

achievable

∙ Best achievable: train classifier with obstacle labels, predict
map and plan

∙ VIN did not observe any labeled obstacle data
∙ Conclusion: can handle non-trivial perception

36



continuous control domain



continuous control domain

∙ Move particle between obstacles, stop at goal
∙ 4d state (position, velocity), 2d action (force)
∙ Input: state + low-res (16× 16) map

38



continuous control domain

∙ Move particle between obstacles, stop at goal
∙ 4d state (position, velocity), 2d action (force)
∙ Input: state + low-res (16× 16) map

Input map

38



continuous control domain

∙ VI state space: grid-world
∙ Attention: 5× 5 patch around
current state

∙ Reactive policy: FC, Gaussian
mean output

39



continuous control domain

∙ VI state space: grid-world
∙ Attention: 5× 5 patch around
current state

∙ Reactive policy: FC, Gaussian
mean output

39



continuous control domain

∙ VI state space: grid-world
∙ Attention: 5× 5 patch around
current state

∙ Reactive policy: FC, Gaussian
mean output

39



continuous control domain

Compare with:

∙ CNN inspired by DQN architecture1,2

∙ 2 conv layers + 2× 2 pooling + 3 FC layers

Training:

∙ 200 random maps
∙ iLQG with unknown dynamics3

∙ Supervised learning (equiv. 1 iteration of guided policy search)

1Mnih et al. Nature 2015
2Lillicrap et al. ICLR 2016
3Levine & Abbeel, NIPS 2014

40



continuous control domain

Evaluation:
∙ Distance to goal on final time

Results:

Network Train Error Test Error
VIN 0.30 0.35
CNN 0.39 0.58

41



web-nav domain – language-based search



web-nav domain

∙ ”End-to-End Goal-Driven Web Navigation” Nogueira & Cho, arXiv 2016
∙ Navigate website links to find a query

43



web-nav domain

∙ ”End-to-End Goal-Driven Web Navigation” Nogueira & Cho, arXiv 2016
∙ Navigate website links to find a query

43



web-nav domain

∙ ”End-to-End Goal-Driven Web Navigation” Nogueira & Cho, arXiv 2016
∙ Navigate website links to find a query

43



web-nav domain

∙ ”End-to-End Goal-Driven Web Navigation” Nogueira & Cho, arXiv 2016
∙ Navigate website links to find a query

43



web-nav domain

∙ ”End-to-End Goal-Driven Web Navigation” Nogueira & Cho, arXiv 2016
∙ Navigate website links to find a query

43



web-nav domain

∙ ”End-to-End Goal-Driven Web Navigation” Nogueira & Cho, arXiv 2016

∙ Navigate website links to find a query
∙ Observe: ϕ(s), ϕ(q), ϕ(s′|s, a)
∙ Features: average word embeddings
∙ Baseline policy: h = NN(ϕ(s), ϕ(q)), π(a|s) ∝ exp(⟨h, ϕ(s′)⟩)

44



web-nav domain

∙ Idea: use an approximate graph for planning
∙ Wikipedia for Schools website (6K pages)
∙ Approximate graph: 1st+2nd level categories (3%)

45



web-nav domain

∙ VI state space + transitions :
approx. graph

∙ VI Reward map: weighted
similarity to ϕ(q)

∙ Attention: average weighted
by similarity to ϕ(s′)

∙ Reactive policy: add feature
to ϕ(s′)

46



web-nav domain

∙ VI state space + transitions :
approx. graph

∙ VI Reward map: weighted
similarity to ϕ(q)

∙ Attention: average weighted
by similarity to ϕ(s′)

∙ Reactive policy: add feature
to ϕ(s′)

46



web-nav domain

Evaluation:

∙ Success – all correct actions within top-4 predictions
∙ Test set 1: start from index page

∙ Test set 2: start from random page

Results:

Network Success set 1
Baseline 1025/2000

VIN 1030/2000

.

47



web-nav domain

Evaluation:

∙ Success – all correct actions within top-4 predictions
∙ Test set 1: start from index page
∙ Test set 2: start from random page

Results:

Network Success set 1 Success set 2
Baseline 1025/2000 304/4000

VIN 1030/2000 346/4000

.

47



web-nav domain

Evaluation:

∙ Success – all correct actions within top-4 predictions
∙ Test set 1: start from index page
∙ Test set 2: start from random page

Results:

Network Success set 1 Success set 2
Baseline 1025/2000 304/4000

VIN 1030/2000 346/4000

.

Preliminary results: full English Wikipedia website, using wiki-school
as approximate graph

47



summary & outlook



summary

∙ Learn to plan → generalization
∙ Framework for planning based NN policies

∙ Motivated by dynamic programming theory
∙ Differentiable planner (VI = CNN)
∙ Compositionality of NNs – perception & control
∙ Exploits flexible prior knowledge
∙ Simple to use

49



outlook & discussion

∙ Different planning algorithms
∙ MCTS
∙ Optimal control1

∙ Inverse RL2

∙ How to obtain approximate planning problem
∙ Game manual in Atari

∙ Generalization in RL3

∙ theory?
∙ benchmarks?
∙ Algorithms?

∙ Generalization ̸= lifelong RL, transfer learning4

∙ Hierarchical policies, but not options/skills/etc.
1Watter et al. NIPS 2015
2Zucker & Bagnell, ICRA 2011
3Oh et al. ICML 2016, Barreto et al. arXiv 2016
4Taylor & Stone, JMLR 2009

50



thank you!


	Introduction
	Background
	A Model for Policies that Plan
	Value Iteration = Convnet
	Value Iteration Networks
	Experiments
	Grid-World Domain
	Mars-Navigation Domain
	Continuous Control Domain
	Web-Nav Domain – Language-Based Search
	Summary & Outlook
	Thank you!

