目录
ICLR2019,The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
彩票假设的正式定义为:一个随机初始化的密集神经网络包含一个初始化的子网络,在单独训练时,最多经过相同的迭代次数,可以达到和原始网络一样的测试准确率。
我们将一个复杂网络的所有参数当做奖池,上述一组子参数对应的子网络就是中奖彩票。
作者提出了彩票假设并给出一种寻找中奖彩票的方法,通过迭代非结构化剪枝的方式可以找到一个子网络,用原始网络的初始化参数来初始化,可以在性能不下降的情况下更快的训练这个子网络,但是如果用随机初始化方法却达不到同样的性能。
作者也在文章中指出这项工作存在的一些问题。例如,迭代剪枝的计算量太大,需要对一个网络进行连续 15 次或 15 次以上的多次训练。未来可以探索更加高效的寻找中奖彩票的方法。
Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask