To Top
首页 > 深度学习 > 正文

match for search recommendation(传统部分)

标签:match, search, recommend, lihang, sigir18, www18


这里讲传统部分,深度学习部分见:https://daiwk.github.io/posts/dl-match-for-search-recommendation.html

概述

搜索领域的传统匹配模型

使用机器翻译匹配

Statistical Machine Translation (SMT)

Word-based Model: IBM Model One

使用Word-based Translation Models进行匹配

使用Phrase-based translation models进行匹配

在latent space中匹配

Partial Least Square (PLS)

Regularized Mapping to Latent Space(RMLS)

推荐领域的传统匹配模型

Collaborative Filtering Models

Memory-based CF

Model-based CF

Item-based CF in Latent Space

Fusing User-based and Item-based CF in Latent Space

MF

FISM

SVD++

Generic Feature-based Models

Factorization Machine

Rendle, ICDM’10

FM使得矩阵分解更容易加特征了,所以,可以模仿以下模型的效果:

MF,SVD++,timeSVD(Koren,KDD’09),PIFT(Rendle,WSDM’10)etc.

例如:

当xxxx时,FM和MF+bias是等价的:



当xxxx时,FM和SVD++是等价的:



隐式反馈vs 显式反馈

top-k 推荐


原创文章,转载请注明出处!
本文链接:http://daiwk.github.io/posts/dl-match-for-search-recommendation-traditional.html
上篇: autokeras
下篇: match for search recommendation(深度学习部分)

comment here..