目录
FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative Flow
本文是 CMU 和 Facebook AI 联合发表于 EMNLP 2019 的工作。为了解决自自回归模型(auto regressive)在 Seq2Seq 问题上解码速度慢,只能利用一侧上下文信息等问题,提出了利用 generative flow 的非自回归模型(non-autoregressive)FlowSeq。在机器翻译任务上面的相比于之前的非自回归模型有显著提高,大大缩小了与自回归模型的差距。同时解码速度比自回归模型明显加快。